kovacsvi commited on
Commit
690a8d2
·
1 Parent(s): 04b374c

removed low_cpu_memory_usage

Browse files
interfaces/cap.py CHANGED
@@ -86,7 +86,7 @@ def build_huggingface_path(language: str, domain: str):
86
  #@spaces.GPU
87
  def predict(text, model_id, tokenizer_id):
88
  device = torch.device("cpu")
89
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN).to(device)
90
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
91
 
92
  inputs = tokenizer(text,
 
86
  #@spaces.GPU
87
  def predict(text, model_id, tokenizer_id):
88
  device = torch.device("cpu")
89
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN).to(device)
90
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
91
 
92
  inputs = tokenizer(text,
interfaces/cap_media_demo.py CHANGED
@@ -35,7 +35,7 @@ def build_huggingface_path(language: str, domain: str):
35
 
36
  def predict(text, model_id, tokenizer_id):
37
  device = torch.device("cpu")
38
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
39
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
40
 
41
  inputs = tokenizer(text,
 
35
 
36
  def predict(text, model_id, tokenizer_id):
37
  device = torch.device("cpu")
38
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
39
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
40
 
41
  inputs = tokenizer(text,
interfaces/cap_minor.py CHANGED
@@ -67,7 +67,7 @@ def build_huggingface_path(language: str, domain: str):
67
 
68
  def predict(text, model_id, tokenizer_id):
69
  device = torch.device("cpu")
70
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
71
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
72
 
73
  inputs = tokenizer(text,
 
67
 
68
  def predict(text, model_id, tokenizer_id):
69
  device = torch.device("cpu")
70
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
71
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
72
 
73
  inputs = tokenizer(text,
interfaces/cap_minor_media.py CHANGED
@@ -150,7 +150,7 @@ def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
150
 
151
  def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None):
152
  device = torch.device("cpu")
153
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN).to(device)
154
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
155
 
156
  inputs = tokenizer(text,
 
150
 
151
  def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None):
152
  device = torch.device("cpu")
153
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN).to(device)
154
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
155
 
156
  inputs = tokenizer(text,
interfaces/emotion.py CHANGED
@@ -27,7 +27,7 @@ def build_huggingface_path(language: str):
27
 
28
  def predict(text, model_id, tokenizer_id):
29
  device = torch.device("cpu")
30
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
31
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
32
  model.to(device)
33
 
 
27
 
28
  def predict(text, model_id, tokenizer_id):
29
  device = torch.device("cpu")
30
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
31
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
32
  model.to(device)
33
 
interfaces/emotion9.py CHANGED
@@ -26,7 +26,7 @@ def build_huggingface_path(language: str):
26
 
27
  def predict(text, model_id, tokenizer_id):
28
  device = torch.device("cpu")
29
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, token=HF_TOKEN)
30
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
31
 
32
  inputs = tokenizer(text,
 
26
 
27
  def predict(text, model_id, tokenizer_id):
28
  device = torch.device("cpu")
29
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, token=HF_TOKEN)
30
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
31
 
32
  inputs = tokenizer(text,
interfaces/illframes.py CHANGED
@@ -59,7 +59,7 @@ def build_huggingface_path(domain: str):
59
  def predict(text, model_id, tokenizer_id, label_names):
60
  device = torch.device("cpu")
61
  try:
62
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
63
  except:
64
  disk_space = get_disk_space('/data/')
65
  print("Disk Space Error:")
@@ -67,7 +67,7 @@ def predict(text, model_id, tokenizer_id, label_names):
67
  print(f"{key}: {value}")
68
 
69
  shutil.rmtree("/data")
70
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN, force_download=True)
71
 
72
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
73
 
 
59
  def predict(text, model_id, tokenizer_id, label_names):
60
  device = torch.device("cpu")
61
  try:
62
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
63
  except:
64
  disk_space = get_disk_space('/data/')
65
  print("Disk Space Error:")
 
67
  print(f"{key}: {value}")
68
 
69
  shutil.rmtree("/data")
70
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, force_download=True)
71
 
72
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
73
 
interfaces/manifesto.py CHANGED
@@ -26,7 +26,7 @@ def build_huggingface_path(language: str):
26
 
27
  def predict(text, model_id, tokenizer_id):
28
  device = torch.device("cpu")
29
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
30
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
31
 
32
  inputs = tokenizer(text,
 
26
 
27
  def predict(text, model_id, tokenizer_id):
28
  device = torch.device("cpu")
29
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
30
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
31
 
32
  inputs = tokenizer(text,
interfaces/ontolisst.py CHANGED
@@ -44,7 +44,7 @@ def build_huggingface_path(language: str):
44
 
45
  def predict(text, model_id, tokenizer_id):
46
  device = torch.device("cpu")
47
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
48
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
49
 
50
  # --- DEBUG ---
 
44
 
45
  def predict(text, model_id, tokenizer_id):
46
  device = torch.device("cpu")
47
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
48
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
49
 
50
  # --- DEBUG ---
interfaces/sentiment.py CHANGED
@@ -30,7 +30,7 @@ def build_huggingface_path(language: str):
30
 
31
  def predict(text, model_id, tokenizer_id):
32
  device = torch.device("cpu")
33
- model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
34
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
35
  model.to(device)
36
 
 
30
 
31
  def predict(text, model_id, tokenizer_id):
32
  device = torch.device("cpu")
33
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
34
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
35
  model.to(device)
36
 
utils.py CHANGED
@@ -54,7 +54,7 @@ tokenizers = ["xlm-roberta-large"]
54
 
55
  def download_hf_models():
56
  for model_id in models:
57
- AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
58
  for tokenizer_id in tokenizers:
59
  AutoTokenizer.from_pretrained(tokenizer_id)
60
 
 
54
 
55
  def download_hf_models():
56
  for model_id in models:
57
+ AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
58
  for tokenizer_id in tokenizers:
59
  AutoTokenizer.from_pretrained(tokenizer_id)
60