Spaces:
Running
Running
kovacsvi
commited on
Commit
·
70be539
1
Parent(s):
6796ab1
minor - media (hierarchical)
Browse files- interfaces/cap_minor_media.py +66 -27
interfaces/cap_minor_media.py
CHANGED
@@ -7,8 +7,10 @@ import pandas as pd
|
|
7 |
from transformers import AutoModelForSequenceClassification
|
8 |
from transformers import AutoTokenizer
|
9 |
from huggingface_hub import HfApi
|
|
|
10 |
|
11 |
-
from label_dicts import CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES
|
|
|
12 |
|
13 |
from .utils import is_disk_full
|
14 |
|
@@ -31,46 +33,83 @@ def check_huggingface_path(checkpoint_path: str):
|
|
31 |
return False
|
32 |
|
33 |
def build_huggingface_path(language: str, domain: str):
|
34 |
-
return "poltextlab/xlm-roberta-large-pooled-cap-media"
|
35 |
|
36 |
-
def predict(text,
|
37 |
device = torch.device("cpu")
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
truncation=True,
|
44 |
-
padding="do_not_pad",
|
45 |
-
return_tensors="pt").to(device)
|
46 |
-
model.eval()
|
47 |
|
|
|
|
|
48 |
with torch.no_grad():
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
52 |
-
output_pred = {f"[{CAP_MEDIA_NUM_DICT[i]}] {CAP_MEDIA_LABEL_NAMES[CAP_MEDIA_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
|
53 |
-
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
54 |
return output_pred, output_info
|
55 |
|
56 |
def predict_cap(text, language, domain):
|
57 |
domain = domains[domain]
|
58 |
-
|
59 |
tokenizer_id = "xlm-roberta-large"
|
60 |
|
61 |
if is_disk_full():
|
62 |
os.system('rm -rf /data/models*')
|
63 |
os.system('rm -r ~/.cache/huggingface/hub')
|
64 |
|
65 |
-
return predict(text,
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
with gr.Blocks() as demo:
|
75 |
-
gr.Markdown("""# CAP Media Topics Babel Demo
|
76 |
-
## 🚧 Coming Soon 🚧""")
|
|
|
7 |
from transformers import AutoModelForSequenceClassification
|
8 |
from transformers import AutoTokenizer
|
9 |
from huggingface_hub import HfApi
|
10 |
+
from collections import defaultdict
|
11 |
|
12 |
+
from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES,
|
13 |
+
CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES)
|
14 |
|
15 |
from .utils import is_disk_full
|
16 |
|
|
|
33 |
return False
|
34 |
|
35 |
def build_huggingface_path(language: str, domain: str):
|
36 |
+
return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3")
|
37 |
|
38 |
+
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
|
39 |
device = torch.device("cpu")
|
40 |
+
|
41 |
+
# Load major and minor models + tokenizer
|
42 |
+
major_model = AutoModelForSequenceClassification.from_pretrained(
|
43 |
+
major_model_id,
|
44 |
+
low_cpu_mem_usage=True,
|
45 |
+
device_map="auto",
|
46 |
+
offload_folder="offload",
|
47 |
+
token=HF_TOKEN
|
48 |
+
).to(device)
|
49 |
+
|
50 |
+
minor_model = AutoModelForSequenceClassification.from_pretrained(
|
51 |
+
minor_model_id,
|
52 |
+
low_cpu_mem_usage=True,
|
53 |
+
device_map="auto",
|
54 |
+
offload_folder="offload",
|
55 |
+
token=HF_TOKEN
|
56 |
+
).to(device)
|
57 |
+
|
58 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
59 |
|
60 |
+
# Tokenize input
|
61 |
+
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Predict major topic
|
64 |
+
major_model.eval()
|
65 |
with torch.no_grad():
|
66 |
+
major_logits = major_model(**inputs).logits
|
67 |
+
major_probs = F.softmax(major_logits, dim=-1)
|
68 |
+
major_probs_np = major_probs.cpu().numpy().flatten()
|
69 |
+
top_major_index = int(np.argmax(major_probs_np))
|
70 |
+
top_major_id = major_index_to_id[top_major_index]
|
71 |
+
|
72 |
+
# Default: show major topic predictions
|
73 |
+
output_pred = {
|
74 |
+
f"[{major_index_to_id[i]}] {CAP_MEDIA_LABEL_NAMES[major_index_to_id[i]]}": float(major_probs_np[i])
|
75 |
+
for i in np.argsort(major_probs_np)[::-1]
|
76 |
+
}
|
77 |
+
|
78 |
+
# If eligible for minor prediction
|
79 |
+
if top_major_id in major_to_minor_map:
|
80 |
+
valid_minor_ids = major_to_minor_map[top_major_id]
|
81 |
+
minor_model.eval()
|
82 |
+
with torch.no_grad():
|
83 |
+
minor_logits = minor_model(**inputs).logits
|
84 |
+
minor_probs = F.softmax(minor_logits, dim=-1)
|
85 |
+
|
86 |
+
# Restrict to valid minor codes
|
87 |
+
valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index]
|
88 |
+
filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices}
|
89 |
+
output_pred = {
|
90 |
+
f"[{k}] {CAP_MIN_LABEL_NAMES[k]}": v
|
91 |
+
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
|
92 |
+
}
|
93 |
+
|
94 |
+
output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>'
|
95 |
|
|
|
|
|
|
|
96 |
return output_pred, output_info
|
97 |
|
98 |
def predict_cap(text, language, domain):
|
99 |
domain = domains[domain]
|
100 |
+
major_model_id, minor_model_id = build_huggingface_path(language, domain)
|
101 |
tokenizer_id = "xlm-roberta-large"
|
102 |
|
103 |
if is_disk_full():
|
104 |
os.system('rm -rf /data/models*')
|
105 |
os.system('rm -r ~/.cache/huggingface/hub')
|
106 |
|
107 |
+
return predict(text, major_model_id, minor_model_id, tokenizer_id)
|
108 |
+
|
109 |
+
demo = gr.Interface(
|
110 |
+
title="CAP Media Topics Babel Demo",
|
111 |
+
fn=predict_cap,
|
112 |
+
inputs=[gr.Textbox(lines=6, label="Input"),
|
113 |
+
gr.Dropdown(languages, label="Language"),
|
114 |
+
gr.Dropdown(domains.keys(), label="Domain")],
|
115 |
+
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
|
|
|
|
|
|