Spaces:
Running
Running
kovacsvi
commited on
Commit
·
72be8df
1
Parent(s):
ad7818c
use codebooks database for label_names, num_dicts
Browse files- label_dicts.py +50 -1086
label_dicts.py
CHANGED
@@ -1,1086 +1,50 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
6: 7,
|
52 |
-
7: 8,
|
53 |
-
8: 9,
|
54 |
-
9: 10,
|
55 |
-
10: 12,
|
56 |
-
11: 13,
|
57 |
-
12: 14,
|
58 |
-
13: 15,
|
59 |
-
14: 16,
|
60 |
-
15: 17,
|
61 |
-
16: 18,
|
62 |
-
17: 19,
|
63 |
-
18: 20,
|
64 |
-
19: 21,
|
65 |
-
20: 23,
|
66 |
-
21: 24,
|
67 |
-
22: 25,
|
68 |
-
23: 26,
|
69 |
-
24: 27,
|
70 |
-
25: 28,
|
71 |
-
26: 29,
|
72 |
-
27: 30,
|
73 |
-
28: 31,
|
74 |
-
29: 32,
|
75 |
-
30: 33,
|
76 |
-
31: 34,
|
77 |
-
32: 35,
|
78 |
-
33: 36,
|
79 |
-
34: 37,
|
80 |
-
35: 38,
|
81 |
-
36: 39,
|
82 |
-
37: 40,
|
83 |
-
38: 41,
|
84 |
-
39: 998
|
85 |
-
}
|
86 |
-
|
87 |
-
CAP_NUM_DICT = {
|
88 |
-
0: 1,
|
89 |
-
1: 2,
|
90 |
-
2: 3,
|
91 |
-
3: 4,
|
92 |
-
4: 5,
|
93 |
-
5: 6,
|
94 |
-
6: 7,
|
95 |
-
7: 8,
|
96 |
-
8: 9,
|
97 |
-
9: 10,
|
98 |
-
10: 12,
|
99 |
-
11: 13,
|
100 |
-
12: 14,
|
101 |
-
13: 15,
|
102 |
-
14: 16,
|
103 |
-
15: 17,
|
104 |
-
16: 18,
|
105 |
-
17: 19,
|
106 |
-
18: 20,
|
107 |
-
19: 21,
|
108 |
-
20: 23,
|
109 |
-
21: 999,
|
110 |
-
22: 999, # had to do this because of some language-domain models (e.g. english media)
|
111 |
-
}
|
112 |
-
|
113 |
-
CAP_MEDIA_LABEL_NAMES = {
|
114 |
-
1: "Macroeconomics",
|
115 |
-
2: "Civil Rights",
|
116 |
-
3: "Health",
|
117 |
-
4: "Agriculture",
|
118 |
-
5: "Labor",
|
119 |
-
6: "Education",
|
120 |
-
7: "Environment",
|
121 |
-
8: "Energy",
|
122 |
-
9: "Immigration",
|
123 |
-
10: "Transportation",
|
124 |
-
12: "Law and Crime",
|
125 |
-
13: "Social Welfare",
|
126 |
-
14: "Housing",
|
127 |
-
15: "Domestic Commerce",
|
128 |
-
16: "Defense",
|
129 |
-
17: "Technology",
|
130 |
-
18: "Foreign Trade",
|
131 |
-
19: "International Affairs",
|
132 |
-
20: "Government Operations",
|
133 |
-
21: "Public Lands",
|
134 |
-
23: "Culture",
|
135 |
-
24: "State and Local Government Administration",
|
136 |
-
26: "Weather and Natural Disasters",
|
137 |
-
27: "Fires",
|
138 |
-
29: "Sports and Recreation",
|
139 |
-
30: "Death Notices",
|
140 |
-
31: "Churches and Religions",
|
141 |
-
99: "Other, Miscellaneous, and Human Interest",
|
142 |
-
998: "No Policy or Media Content"
|
143 |
-
}
|
144 |
-
|
145 |
-
CAP_MEDIA_NUM_DICT = {
|
146 |
-
0: 1,
|
147 |
-
1: 2,
|
148 |
-
2: 3,
|
149 |
-
3: 4,
|
150 |
-
4: 5,
|
151 |
-
5: 6,
|
152 |
-
6: 7,
|
153 |
-
7: 8,
|
154 |
-
8: 9,
|
155 |
-
9: 10,
|
156 |
-
10: 12,
|
157 |
-
11: 13,
|
158 |
-
12: 14,
|
159 |
-
13: 15,
|
160 |
-
14: 16,
|
161 |
-
15: 17,
|
162 |
-
16: 18,
|
163 |
-
17: 19,
|
164 |
-
18: 20,
|
165 |
-
19: 21,
|
166 |
-
20: 23,
|
167 |
-
21: 24,
|
168 |
-
22:26,
|
169 |
-
23:27,
|
170 |
-
24:29,
|
171 |
-
25:30,
|
172 |
-
26:31,
|
173 |
-
27:99,
|
174 |
-
28:998
|
175 |
-
}
|
176 |
-
|
177 |
-
CAP_MIN_NUM_DICT = {
|
178 |
-
0: 100,
|
179 |
-
1: 101,
|
180 |
-
2: 103,
|
181 |
-
3: 104,
|
182 |
-
4: 105,
|
183 |
-
5: 107,
|
184 |
-
6: 108,
|
185 |
-
7: 110,
|
186 |
-
8: 199,
|
187 |
-
9: 200,
|
188 |
-
10: 201,
|
189 |
-
11: 202,
|
190 |
-
12: 204,
|
191 |
-
13: 205,
|
192 |
-
14: 206,
|
193 |
-
15: 207,
|
194 |
-
16: 208,
|
195 |
-
17: 209,
|
196 |
-
18: 299,
|
197 |
-
19: 300,
|
198 |
-
20: 301,
|
199 |
-
21: 302,
|
200 |
-
22: 321,
|
201 |
-
23: 322,
|
202 |
-
24: 323,
|
203 |
-
25: 324,
|
204 |
-
26: 325,
|
205 |
-
27: 331,
|
206 |
-
28: 332,
|
207 |
-
29: 333,
|
208 |
-
30: 334,
|
209 |
-
31: 335,
|
210 |
-
32: 341,
|
211 |
-
33: 342,
|
212 |
-
34: 398,
|
213 |
-
35: 399,
|
214 |
-
36: 400,
|
215 |
-
37: 401,
|
216 |
-
38: 402,
|
217 |
-
39: 403,
|
218 |
-
40: 404,
|
219 |
-
41: 405,
|
220 |
-
42: 408,
|
221 |
-
43: 498,
|
222 |
-
44: 499,
|
223 |
-
45: 500,
|
224 |
-
46: 501,
|
225 |
-
47: 502,
|
226 |
-
48: 503,
|
227 |
-
49: 504,
|
228 |
-
50: 505,
|
229 |
-
51: 506,
|
230 |
-
52: 529,
|
231 |
-
53: 599,
|
232 |
-
54: 600,
|
233 |
-
55: 601,
|
234 |
-
56: 602,
|
235 |
-
57: 603,
|
236 |
-
58: 604,
|
237 |
-
59: 606,
|
238 |
-
60: 607,
|
239 |
-
61: 698,
|
240 |
-
62: 699,
|
241 |
-
63: 700,
|
242 |
-
64: 701,
|
243 |
-
65: 703,
|
244 |
-
66: 704,
|
245 |
-
67: 705,
|
246 |
-
68: 707,
|
247 |
-
69: 708,
|
248 |
-
70: 709,
|
249 |
-
71: 711,
|
250 |
-
72: 798,
|
251 |
-
73: 799,
|
252 |
-
74: 800,
|
253 |
-
75: 801,
|
254 |
-
76: 802,
|
255 |
-
77: 803,
|
256 |
-
78: 805,
|
257 |
-
79: 806,
|
258 |
-
80: 807,
|
259 |
-
81: 898,
|
260 |
-
82: 899,
|
261 |
-
83: 900,
|
262 |
-
84: 1000,
|
263 |
-
85: 1001,
|
264 |
-
86: 1002,
|
265 |
-
87: 1003,
|
266 |
-
88: 1005,
|
267 |
-
89: 1007,
|
268 |
-
90: 1010,
|
269 |
-
91: 1098,
|
270 |
-
92: 1099,
|
271 |
-
93: 1200,
|
272 |
-
94: 1201,
|
273 |
-
95: 1202,
|
274 |
-
96: 1203,
|
275 |
-
97: 1204,
|
276 |
-
98: 1205,
|
277 |
-
99: 1206,
|
278 |
-
100: 1207,
|
279 |
-
101: 1208,
|
280 |
-
102: 1210,
|
281 |
-
103: 1211,
|
282 |
-
104: 1227,
|
283 |
-
105: 1299,
|
284 |
-
106: 1300,
|
285 |
-
107: 1302,
|
286 |
-
108: 1303,
|
287 |
-
109: 1304,
|
288 |
-
110: 1305,
|
289 |
-
111: 1308,
|
290 |
-
112: 1399,
|
291 |
-
113: 1400,
|
292 |
-
114: 1401,
|
293 |
-
115: 1403,
|
294 |
-
116: 1404,
|
295 |
-
117: 1405,
|
296 |
-
118: 1406,
|
297 |
-
119: 1407,
|
298 |
-
120: 1408,
|
299 |
-
121: 1409,
|
300 |
-
122: 1498,
|
301 |
-
123: 1499,
|
302 |
-
124: 1500,
|
303 |
-
125: 1501,
|
304 |
-
126: 1502,
|
305 |
-
127: 1504,
|
306 |
-
128: 1505,
|
307 |
-
129: 1507,
|
308 |
-
130: 1520,
|
309 |
-
131: 1521,
|
310 |
-
132: 1522,
|
311 |
-
133: 1523,
|
312 |
-
134: 1524,
|
313 |
-
135: 1525,
|
314 |
-
136: 1526,
|
315 |
-
137: 1598,
|
316 |
-
138: 1599,
|
317 |
-
139: 1600,
|
318 |
-
140: 1602,
|
319 |
-
141: 1603,
|
320 |
-
142: 1604,
|
321 |
-
143: 1605,
|
322 |
-
144: 1606,
|
323 |
-
145: 1608,
|
324 |
-
146: 1610,
|
325 |
-
147: 1611,
|
326 |
-
148: 1612,
|
327 |
-
149: 1614,
|
328 |
-
150: 1615,
|
329 |
-
151: 1616,
|
330 |
-
152: 1617,
|
331 |
-
153: 1619,
|
332 |
-
154: 1620,
|
333 |
-
155: 1698,
|
334 |
-
156: 1699,
|
335 |
-
157: 1700,
|
336 |
-
158: 1701,
|
337 |
-
159: 1704,
|
338 |
-
160: 1705,
|
339 |
-
161: 1706,
|
340 |
-
162: 1707,
|
341 |
-
163: 1708,
|
342 |
-
164: 1709,
|
343 |
-
165: 1798,
|
344 |
-
166: 1799,
|
345 |
-
167: 1800,
|
346 |
-
168: 1802,
|
347 |
-
169: 1803,
|
348 |
-
170: 1804,
|
349 |
-
171: 1806,
|
350 |
-
172: 1807,
|
351 |
-
173: 1808,
|
352 |
-
174: 1899,
|
353 |
-
175: 1900,
|
354 |
-
176: 1901,
|
355 |
-
177: 1902,
|
356 |
-
178: 1905,
|
357 |
-
179: 1906,
|
358 |
-
180: 1910,
|
359 |
-
181: 1921,
|
360 |
-
182: 1925,
|
361 |
-
183: 1926,
|
362 |
-
184: 1927,
|
363 |
-
185: 1929,
|
364 |
-
186: 1999,
|
365 |
-
187: 2000,
|
366 |
-
188: 2001,
|
367 |
-
189: 2002,
|
368 |
-
190: 2003,
|
369 |
-
191: 2004,
|
370 |
-
192: 2005,
|
371 |
-
193: 2006,
|
372 |
-
194: 2007,
|
373 |
-
195: 2008,
|
374 |
-
196: 2009,
|
375 |
-
197: 2010,
|
376 |
-
198: 2011,
|
377 |
-
199: 2012,
|
378 |
-
200: 2013,
|
379 |
-
201: 2014,
|
380 |
-
202: 2015,
|
381 |
-
203: 2030,
|
382 |
-
204: 2099,
|
383 |
-
205: 2100,
|
384 |
-
206: 2101,
|
385 |
-
207: 2102,
|
386 |
-
208: 2103,
|
387 |
-
209: 2104,
|
388 |
-
210: 2105,
|
389 |
-
211: 2199,
|
390 |
-
212: 2300,
|
391 |
-
213: 999
|
392 |
-
}
|
393 |
-
CAP_LABEL_NAMES = {
|
394 |
-
1: "Macroeconomics",
|
395 |
-
2: "Civil Rights",
|
396 |
-
3: "Health",
|
397 |
-
4: "Agriculture",
|
398 |
-
5: "Labor",
|
399 |
-
6: "Education",
|
400 |
-
7: "Environment",
|
401 |
-
8: "Energy",
|
402 |
-
9: "Immigration",
|
403 |
-
10: "Transportation",
|
404 |
-
12: "Law and Crime",
|
405 |
-
13: "Social Welfare",
|
406 |
-
14: "Housing",
|
407 |
-
15: "Domestic Commerce",
|
408 |
-
16: "Defense",
|
409 |
-
17: "Technology",
|
410 |
-
18: "Foreign Trade",
|
411 |
-
19: "International Affairs",
|
412 |
-
20: "Government Operations",
|
413 |
-
21: "Public Lands",
|
414 |
-
23: "Culture",
|
415 |
-
999: "No Policy Content"
|
416 |
-
}
|
417 |
-
|
418 |
-
CAP_MIN_MEDIA_NUM_DICT = {0: 100,
|
419 |
-
1: 101,
|
420 |
-
2: 103,
|
421 |
-
3: 104,
|
422 |
-
4: 105,
|
423 |
-
5: 107,
|
424 |
-
6: 108,
|
425 |
-
7: 110,
|
426 |
-
8: 199,
|
427 |
-
9: 200,
|
428 |
-
10: 201,
|
429 |
-
11: 202,
|
430 |
-
12: 204,
|
431 |
-
13: 205,
|
432 |
-
14: 206,
|
433 |
-
15: 207,
|
434 |
-
16: 208,
|
435 |
-
17: 209,
|
436 |
-
18: 299,
|
437 |
-
19: 300,
|
438 |
-
20: 301,
|
439 |
-
21: 302,
|
440 |
-
22: 321,
|
441 |
-
23: 322,
|
442 |
-
24: 323,
|
443 |
-
25: 324,
|
444 |
-
26: 325,
|
445 |
-
27: 331,
|
446 |
-
28: 332,
|
447 |
-
29: 333,
|
448 |
-
30: 334,
|
449 |
-
31: 335,
|
450 |
-
32: 341,
|
451 |
-
33: 342,
|
452 |
-
34: 398,
|
453 |
-
35: 399,
|
454 |
-
36: 400,
|
455 |
-
37: 401,
|
456 |
-
38: 402,
|
457 |
-
39: 403,
|
458 |
-
40: 404,
|
459 |
-
41: 405,
|
460 |
-
42: 408,
|
461 |
-
43: 498,
|
462 |
-
44: 499,
|
463 |
-
45: 500,
|
464 |
-
46: 501,
|
465 |
-
47: 502,
|
466 |
-
48: 503,
|
467 |
-
49: 504,
|
468 |
-
50: 505,
|
469 |
-
51: 506,
|
470 |
-
52: 529,
|
471 |
-
53: 599,
|
472 |
-
54: 600,
|
473 |
-
55: 601,
|
474 |
-
56: 602,
|
475 |
-
57: 603,
|
476 |
-
58: 604,
|
477 |
-
59: 606,
|
478 |
-
60: 607,
|
479 |
-
61: 698,
|
480 |
-
62: 699,
|
481 |
-
63: 700,
|
482 |
-
64: 701,
|
483 |
-
65: 703,
|
484 |
-
66: 704,
|
485 |
-
67: 705,
|
486 |
-
68: 707,
|
487 |
-
69: 708,
|
488 |
-
70: 709,
|
489 |
-
71: 711,
|
490 |
-
72: 798,
|
491 |
-
73: 799,
|
492 |
-
74: 800,
|
493 |
-
75: 801,
|
494 |
-
76: 802,
|
495 |
-
77: 803,
|
496 |
-
78: 805,
|
497 |
-
79: 806,
|
498 |
-
80: 807,
|
499 |
-
81: 898,
|
500 |
-
82: 899,
|
501 |
-
83: 900,
|
502 |
-
84: 1000,
|
503 |
-
85: 1001,
|
504 |
-
86: 1002,
|
505 |
-
87: 1003,
|
506 |
-
88: 1005,
|
507 |
-
89: 1007,
|
508 |
-
90: 1010,
|
509 |
-
91: 1098,
|
510 |
-
92: 1099,
|
511 |
-
93: 1200,
|
512 |
-
94: 1201,
|
513 |
-
95: 1202,
|
514 |
-
96: 1203,
|
515 |
-
97: 1204,
|
516 |
-
98: 1205,
|
517 |
-
99: 1206,
|
518 |
-
100: 1207,
|
519 |
-
101: 1208,
|
520 |
-
102: 1210,
|
521 |
-
103: 1211,
|
522 |
-
104: 1227,
|
523 |
-
105: 1299,
|
524 |
-
106: 1300,
|
525 |
-
107: 1302,
|
526 |
-
108: 1303,
|
527 |
-
109: 1304,
|
528 |
-
110: 1305,
|
529 |
-
111: 1308,
|
530 |
-
112: 1399,
|
531 |
-
113: 1400,
|
532 |
-
114: 1401,
|
533 |
-
115: 1403,
|
534 |
-
116: 1404,
|
535 |
-
117: 1405,
|
536 |
-
118: 1406,
|
537 |
-
119: 1407,
|
538 |
-
120: 1408,
|
539 |
-
121: 1409,
|
540 |
-
122: 1498,
|
541 |
-
123: 1499,
|
542 |
-
124: 1500,
|
543 |
-
125: 1501,
|
544 |
-
126: 1502,
|
545 |
-
127: 1504,
|
546 |
-
128: 1505,
|
547 |
-
129: 1507,
|
548 |
-
130: 1520,
|
549 |
-
131: 1521,
|
550 |
-
132: 1522,
|
551 |
-
133: 1523,
|
552 |
-
134: 1524,
|
553 |
-
135: 1525,
|
554 |
-
136: 1526,
|
555 |
-
137: 1598,
|
556 |
-
138: 1599,
|
557 |
-
139: 1600,
|
558 |
-
140: 1602,
|
559 |
-
141: 1603,
|
560 |
-
142: 1604,
|
561 |
-
143: 1605,
|
562 |
-
144: 1606,
|
563 |
-
145: 1608,
|
564 |
-
146: 1610,
|
565 |
-
147: 1611,
|
566 |
-
148: 1612,
|
567 |
-
149: 1614,
|
568 |
-
150: 1615,
|
569 |
-
151: 1616,
|
570 |
-
152: 1617,
|
571 |
-
153: 1619,
|
572 |
-
154: 1620,
|
573 |
-
155: 1698,
|
574 |
-
156: 1699,
|
575 |
-
157: 1700,
|
576 |
-
158: 1701,
|
577 |
-
159: 1704,
|
578 |
-
160: 1705,
|
579 |
-
161: 1706,
|
580 |
-
162: 1707,
|
581 |
-
163: 1708,
|
582 |
-
164: 1709,
|
583 |
-
165: 1798,
|
584 |
-
166: 1799,
|
585 |
-
167: 1800,
|
586 |
-
168: 1802,
|
587 |
-
169: 1803,
|
588 |
-
170: 1804,
|
589 |
-
171: 1806,
|
590 |
-
172: 1807,
|
591 |
-
173: 1808,
|
592 |
-
174: 1899,
|
593 |
-
175: 1900,
|
594 |
-
176: 1901,
|
595 |
-
177: 1902,
|
596 |
-
178: 1905,
|
597 |
-
179: 1906,
|
598 |
-
180: 1910,
|
599 |
-
181: 1921,
|
600 |
-
182: 1925,
|
601 |
-
183: 1926,
|
602 |
-
184: 1927,
|
603 |
-
185: 1929,
|
604 |
-
186: 1999,
|
605 |
-
187: 2000,
|
606 |
-
188: 2001,
|
607 |
-
189: 2002,
|
608 |
-
190: 2003,
|
609 |
-
191: 2004,
|
610 |
-
192: 2005,
|
611 |
-
193: 2006,
|
612 |
-
194: 2007,
|
613 |
-
195: 2008,
|
614 |
-
196: 2009,
|
615 |
-
197: 2010,
|
616 |
-
198: 2011,
|
617 |
-
199: 2012,
|
618 |
-
200: 2013,
|
619 |
-
201: 2014,
|
620 |
-
202: 2015,
|
621 |
-
203: 2030,
|
622 |
-
204: 2099,
|
623 |
-
205: 2100,
|
624 |
-
206: 2101,
|
625 |
-
207: 2102,
|
626 |
-
208: 2103,
|
627 |
-
209: 2104,
|
628 |
-
210: 2105,
|
629 |
-
211: 2300,
|
630 |
-
212: 99, # do not use separate 9999 and 99 labels
|
631 |
-
213: 24,
|
632 |
-
214: 26,
|
633 |
-
215: 27,
|
634 |
-
216: 29,
|
635 |
-
217: 30,
|
636 |
-
218: 31,
|
637 |
-
219: 99}
|
638 |
-
|
639 |
-
MANIFESTO_NUM_DICT = {
|
640 |
-
0: 0,
|
641 |
-
1: 101,
|
642 |
-
2: 102,
|
643 |
-
3: 103,
|
644 |
-
4: 104,
|
645 |
-
5: 105,
|
646 |
-
6: 106,
|
647 |
-
7: 107,
|
648 |
-
8: 108,
|
649 |
-
9: 109,
|
650 |
-
10: 110,
|
651 |
-
11: 201,
|
652 |
-
12: 202,
|
653 |
-
13: 203,
|
654 |
-
14: 204,
|
655 |
-
15: 301,
|
656 |
-
16: 302,
|
657 |
-
17: 303,
|
658 |
-
18: 304,
|
659 |
-
19: 305,
|
660 |
-
20: 401,
|
661 |
-
21: 402,
|
662 |
-
22: 403,
|
663 |
-
23: 404,
|
664 |
-
24: 405,
|
665 |
-
25: 406,
|
666 |
-
26: 407,
|
667 |
-
27: 408,
|
668 |
-
28: 409,
|
669 |
-
29: 410,
|
670 |
-
30: 411,
|
671 |
-
31: 412,
|
672 |
-
32: 413,
|
673 |
-
33: 414,
|
674 |
-
34: 415,
|
675 |
-
35: 416,
|
676 |
-
36: 501,
|
677 |
-
37: 502,
|
678 |
-
38: 503,
|
679 |
-
39: 504,
|
680 |
-
40: 505,
|
681 |
-
41: 506,
|
682 |
-
42: 507,
|
683 |
-
43: 601,
|
684 |
-
44: 602,
|
685 |
-
45: 603,
|
686 |
-
46: 604,
|
687 |
-
47: 605,
|
688 |
-
48: 606,
|
689 |
-
49: 607,
|
690 |
-
50: 608,
|
691 |
-
51: 701,
|
692 |
-
52: 702,
|
693 |
-
53: 703,
|
694 |
-
54: 704,
|
695 |
-
55: 705,
|
696 |
-
56: 706
|
697 |
-
}
|
698 |
-
|
699 |
-
CAP_MIN_LABEL_NAMES = {
|
700 |
-
# 1. Macroeconomics
|
701 |
-
100: "General",
|
702 |
-
101: "Interest Rates",
|
703 |
-
103: "Unemployment Rate",
|
704 |
-
104: "Monetary Policy",
|
705 |
-
105: "National Budget",
|
706 |
-
107: "Tax Code",
|
707 |
-
108: "Industrial Policy",
|
708 |
-
110: "Price Control",
|
709 |
-
199: "Other",
|
710 |
-
# 2. Civil Rights
|
711 |
-
200: "General",
|
712 |
-
201: "Minority Discrimination",
|
713 |
-
202: "Gender Discrimination",
|
714 |
-
204: "Age Discrimination",
|
715 |
-
205: "Handicap Discrimination",
|
716 |
-
206: "Voting Rights",
|
717 |
-
207: "Freedom of Speech",
|
718 |
-
208: "Right to Privacy",
|
719 |
-
209: "Anti-Government",
|
720 |
-
299: "Other",
|
721 |
-
# 3. Health
|
722 |
-
300: "General",
|
723 |
-
301: "Health Care Reform",
|
724 |
-
302: "Insurance",
|
725 |
-
321: "Drug Industry",
|
726 |
-
322: "Medical Facilities",
|
727 |
-
323: "Insurance Providers",
|
728 |
-
324: "Medical Liability",
|
729 |
-
325: "Manpower",
|
730 |
-
331: "Disease Prevention",
|
731 |
-
332: "Infants and Children",
|
732 |
-
333: "Mental Health",
|
733 |
-
334: "Long-term Care",
|
734 |
-
335: "Drug Coverage and Cost",
|
735 |
-
341: "Tobacco Abuse",
|
736 |
-
342: "Drug and Alcohol Abuse",
|
737 |
-
398: "R&D",
|
738 |
-
399: "Other",
|
739 |
-
# 4. Agriculture
|
740 |
-
400: "General",
|
741 |
-
401: "Trade",
|
742 |
-
402: "Subsidies to Farmers",
|
743 |
-
403: "Food Inspection & Safety",
|
744 |
-
404: "Food Marketing & Promotion",
|
745 |
-
405: "Animal and Crop Disease",
|
746 |
-
408: "Fisheries & Fishing",
|
747 |
-
498: "R&D",
|
748 |
-
499: "Other",
|
749 |
-
# 5. Labor
|
750 |
-
500: "General",
|
751 |
-
501: "Worker Safety",
|
752 |
-
502: "Employment Training",
|
753 |
-
503: "Employee Benefits",
|
754 |
-
504: "Labor Unions",
|
755 |
-
505: "Fair Labor Standards",
|
756 |
-
506: "Youth Employment",
|
757 |
-
529: "Migrant and Seasonal",
|
758 |
-
599: "Other",
|
759 |
-
# 6. Education
|
760 |
-
600: "General",
|
761 |
-
601: "Higher",
|
762 |
-
602: "Elementary & Secondary",
|
763 |
-
603: "Underprivileged",
|
764 |
-
604: "Vocational",
|
765 |
-
606: "Special",
|
766 |
-
607: "Excellence",
|
767 |
-
698: "R&D",
|
768 |
-
699: "Other",
|
769 |
-
# 7. Environment
|
770 |
-
700: "General",
|
771 |
-
701: "Drinking Water",
|
772 |
-
703: "Waste Disposal",
|
773 |
-
704: "Hazardous Waste",
|
774 |
-
705: "Air Pollution",
|
775 |
-
707: "Recycling",
|
776 |
-
708: "Indoor Hazards",
|
777 |
-
709: "Species & Forest",
|
778 |
-
711: "Land and Water Conservation",
|
779 |
-
798: "R&D",
|
780 |
-
799: "Other",
|
781 |
-
# 8. Energy
|
782 |
-
800: "General",
|
783 |
-
801: "Nuclear",
|
784 |
-
802: "Electricity",
|
785 |
-
803: "Natural Gas & Oil",
|
786 |
-
805: "Coal",
|
787 |
-
806: "Alternative & Renewable",
|
788 |
-
807: "Conservation",
|
789 |
-
898: "R&D",
|
790 |
-
899: "Other",
|
791 |
-
# 9. Immigration
|
792 |
-
900: "Immigration",
|
793 |
-
# 10. Transportation
|
794 |
-
1000: "General",
|
795 |
-
1001: "Mass",
|
796 |
-
1002: "Highways",
|
797 |
-
1003: "Air Travel",
|
798 |
-
1005: "Railroad Travel",
|
799 |
-
1007: "Maritime",
|
800 |
-
1010: "Infrastructure",
|
801 |
-
1098: "R&D",
|
802 |
-
1099: "Other",
|
803 |
-
# 12. Law and Crime
|
804 |
-
1200: "General",
|
805 |
-
1201: "Agencies",
|
806 |
-
1202: "White Collar Crime",
|
807 |
-
1203: "Illegal Drugs",
|
808 |
-
1204: "Court Administration",
|
809 |
-
1205: "Prisons",
|
810 |
-
1206: "Juvenile Crime",
|
811 |
-
1207: "Child Abuse",
|
812 |
-
1208: "Family Issues",
|
813 |
-
1210: "Criminal & Civil Code",
|
814 |
-
1211: "Crime Control",
|
815 |
-
1227: "Police",
|
816 |
-
1299: "Other",
|
817 |
-
# 13. Social Welfare
|
818 |
-
1300: "General",
|
819 |
-
1302: "Low-Income Assistance",
|
820 |
-
1303: "Elderly Assistance",
|
821 |
-
1304: "Disabled Assistance",
|
822 |
-
1305: "Volunteer Associations",
|
823 |
-
1308: "Child Care",
|
824 |
-
1399: "Other",
|
825 |
-
# 14. Housing
|
826 |
-
1400: "General",
|
827 |
-
1401: "Community Development",
|
828 |
-
1403: "Urban Development",
|
829 |
-
1404: "Rural Housing",
|
830 |
-
1405: "Rural Development",
|
831 |
-
1406: "Low-Income Assistance",
|
832 |
-
1407: "Veterans",
|
833 |
-
1408: "Elderly",
|
834 |
-
1409: "Homeless",
|
835 |
-
1498: "R&D",
|
836 |
-
1499: "Other",
|
837 |
-
# 15. Domestic Commerce
|
838 |
-
1500: "General",
|
839 |
-
1501: "Banking",
|
840 |
-
1502: "Securities & Commodities",
|
841 |
-
1504: "Consumer Finance",
|
842 |
-
1505: "Insurance Regulation",
|
843 |
-
1507: "Bankruptcy",
|
844 |
-
1520: "Corporate Management",
|
845 |
-
1521: "Small Businesses",
|
846 |
-
1522: "Copyrights and Patents",
|
847 |
-
1523: "Disaster Relief",
|
848 |
-
1524: "Tourism",
|
849 |
-
1525: "Consumer Safety",
|
850 |
-
1526: "Sports Regulation",
|
851 |
-
1598: "R&D",
|
852 |
-
1599: "Other",
|
853 |
-
# 16. Defense
|
854 |
-
1600: "General",
|
855 |
-
1602: "Alliances",
|
856 |
-
1603: "Intelligence",
|
857 |
-
1604: "Readiness",
|
858 |
-
1605: "Nuclear Arms",
|
859 |
-
1606: "Military Aid",
|
860 |
-
1608: "Personnel Issues",
|
861 |
-
1610: "Procurement",
|
862 |
-
1611: "Installations & Land",
|
863 |
-
1612: "Reserve Forces",
|
864 |
-
1614: "Hazardous Waste",
|
865 |
-
1615: "Civil",
|
866 |
-
1616: "Civilian Personnel",
|
867 |
-
1617: "Contractors",
|
868 |
-
1619: "Foreign Operations",
|
869 |
-
1620: "Claims against Military",
|
870 |
-
1698: "R&D",
|
871 |
-
1699: "Other",
|
872 |
-
# 17. Technology
|
873 |
-
1700: "General",
|
874 |
-
1701: "Space",
|
875 |
-
1704: "Commercial Use of Space",
|
876 |
-
1705: "Science Transfer",
|
877 |
-
1706: "Telecommunications",
|
878 |
-
1707: "Broadcast",
|
879 |
-
1708: "Weather Forecasting",
|
880 |
-
1709: "Computers",
|
881 |
-
1798: "R&D",
|
882 |
-
1799: "Other",
|
883 |
-
# 18. Foreign Trade
|
884 |
-
1800: "General",
|
885 |
-
1802: "Trade Agreements",
|
886 |
-
1803: "Exports",
|
887 |
-
1804: "Private Investments",
|
888 |
-
1806: "Competitiveness",
|
889 |
-
1807: "Tariff & Imports",
|
890 |
-
1808: "Exchange Rates",
|
891 |
-
1899: "Other",
|
892 |
-
# 19. International Affairs
|
893 |
-
1900: "General",
|
894 |
-
1901: "Foreign Aid",
|
895 |
-
1902: "Resources Exploitation",
|
896 |
-
1905: "Developing Countries",
|
897 |
-
1906: "International Finance",
|
898 |
-
1910: "Western Europe",
|
899 |
-
1921: "Specific Country",
|
900 |
-
1925: "Human Rights",
|
901 |
-
1926: "Organizations",
|
902 |
-
1927: "Terrorism",
|
903 |
-
1929: "Diplomats",
|
904 |
-
1999: "Other",
|
905 |
-
# 20. Government Operations
|
906 |
-
2000: "General",
|
907 |
-
2001: "Intergovernmental Relations",
|
908 |
-
2002: "Bureaucracy",
|
909 |
-
2003: "Postal Service",
|
910 |
-
2004: "Employees",
|
911 |
-
2005: "Appointments",
|
912 |
-
2006: "Currency",
|
913 |
-
2007: "Procurement & Contractors",
|
914 |
-
2008: "Property Management",
|
915 |
-
2009: "Tax Administration",
|
916 |
-
2010: "Scandals",
|
917 |
-
2011: "Branch Relations",
|
918 |
-
2012: "Political Campaigns",
|
919 |
-
2013: "Census & Statistics",
|
920 |
-
2014: "Capital City",
|
921 |
-
2015: "Claims against the government",
|
922 |
-
2030: "National Holidays",
|
923 |
-
2099: "Other",
|
924 |
-
# 21. Public Lands
|
925 |
-
2100: "General",
|
926 |
-
2101: "National Parks",
|
927 |
-
2102: "Indigenous Affairs",
|
928 |
-
2103: "Public Lands",
|
929 |
-
2104: "Water Resources",
|
930 |
-
2105: "Dependencies & Territories",
|
931 |
-
2199: "Other",
|
932 |
-
# 23. Culture
|
933 |
-
2300: "General",
|
934 |
-
# NPC
|
935 |
-
999: "No Policy Content",
|
936 |
-
9999: "No Policy Content",
|
937 |
-
}
|
938 |
-
|
939 |
-
MANIFESTO_LABEL_NAMES = {
|
940 |
-
0: "No Policy Goal",
|
941 |
-
999: "No Policy Goal",
|
942 |
-
101: "Foreign Special Relationships: Positive",
|
943 |
-
102: "Foreign Special Relationships: Negative",
|
944 |
-
103: "Anti-Imperialism",
|
945 |
-
104: "Military: Positive",
|
946 |
-
105: "Military: Negative",
|
947 |
-
106: "Peace",
|
948 |
-
107: "Internationalism: Positive",
|
949 |
-
108: "European Community/Union: Positive",
|
950 |
-
109: "Internationalism: Negative",
|
951 |
-
110: "European Community/Union: Negative",
|
952 |
-
201: "Freedom and Human Rights",
|
953 |
-
202: "Democracy",
|
954 |
-
203: "Constitutionalism: Positive",
|
955 |
-
204: "Constitutionalism: Negative",
|
956 |
-
301: "Federalism",
|
957 |
-
302: "Centralisation",
|
958 |
-
303: "Governmental and Administrative Efficiency",
|
959 |
-
304: "Political Corruption",
|
960 |
-
305: "Political Authority",
|
961 |
-
401: "Free Market Economy",
|
962 |
-
402: "Incentives",
|
963 |
-
403: "Market Regulation",
|
964 |
-
404: "Economic Planning",
|
965 |
-
405: "Corporatism/Mixed Economy",
|
966 |
-
406: "Protectionism: Positive",
|
967 |
-
407: "Protectionism: Negative",
|
968 |
-
408: "Economic Goals",
|
969 |
-
409: "Keynesian Demand Management",
|
970 |
-
410: "Economic Growth: Positive",
|
971 |
-
411: "Technology and Infrastructure",
|
972 |
-
412: "Controlled Economy",
|
973 |
-
413: "Nationalisation",
|
974 |
-
414: "Economic Orthodoxy",
|
975 |
-
415: "Marxist Analysis: Positive",
|
976 |
-
416: "Anti-Growth Economy: Positive",
|
977 |
-
501: "Environmental Protection: Positive",
|
978 |
-
502: "Culture: Positive",
|
979 |
-
503: "Equality: Positive",
|
980 |
-
504: "Welfare State Expansion",
|
981 |
-
505: "Welfare State Limitation",
|
982 |
-
506: "Education Expansion",
|
983 |
-
507: "Education Limitation",
|
984 |
-
601: "National Way of Life: Positive",
|
985 |
-
602: "National Way of Life: Negative",
|
986 |
-
603: "Traditional Morality: Positive",
|
987 |
-
604: "Traditional Morality: Negative",
|
988 |
-
605: "Law and Order: Positive",
|
989 |
-
606: "Civic Mindedness: Positive",
|
990 |
-
607: "Multiculturalism: Positive",
|
991 |
-
608: "Multiculturalism: Negative",
|
992 |
-
701: "Labour Groups: Positive",
|
993 |
-
702: "Labour Groups: Negative",
|
994 |
-
703: "Agriculture and Farmers: Positive",
|
995 |
-
704: "Middle Class and Professional Groups",
|
996 |
-
705: "Underprivileged Minority Groups",
|
997 |
-
706: "Non-economic Demographic Groups"
|
998 |
-
}
|
999 |
-
|
1000 |
-
ILLFRAMES_MIGRATION_LABEL_NAMES = {
|
1001 |
-
901: "Culture Under Attack",
|
1002 |
-
902: "Economic Burden",
|
1003 |
-
903: "Illegals and Fraudsters",
|
1004 |
-
904: "Extradition Necessity",
|
1005 |
-
905: "Nation tate Should Decide",
|
1006 |
-
906: "Administrative Burden",
|
1007 |
-
907: "General System Failure",
|
1008 |
-
908: "Security Threat",
|
1009 |
-
909: "Criminals",
|
1010 |
-
910: "Welfare State Overload",
|
1011 |
-
999: "None of Them",
|
1012 |
-
}
|
1013 |
-
|
1014 |
-
ILLFRAMES_COVID_LABEL_NAMES = {
|
1015 |
-
310: "Skepticism",
|
1016 |
-
311: "Great Reset and Elite Control",
|
1017 |
-
312: "Undermining the Economy",
|
1018 |
-
313: "Medical Choice",
|
1019 |
-
314: "Media Fabrication",
|
1020 |
-
315: "Threatening Way of Life",
|
1021 |
-
399: "None of Them",
|
1022 |
-
}
|
1023 |
-
|
1024 |
-
ILLFRAMES_WAR_LABEL_NAMES = {
|
1025 |
-
101: 'Identity and Cultural Threat',
|
1026 |
-
102: 'Economic Fallout/Domestic Welfare Neglected',
|
1027 |
-
103: 'Violation of Russian Sovereignty/Western geopolitical meddling',
|
1028 |
-
104: 'Illegitimate and corrupt Ukraine leadership',
|
1029 |
-
105: 'Ukrainians and Ukraine are a military threat and agressive war-mongerer that threaten EU stability and security',
|
1030 |
-
107: 'Western Propaganda and Civilian Suffering',
|
1031 |
-
108: 'Historical Betrayal of Russia',
|
1032 |
-
109: 'Ukraine/Nazi Allegation',
|
1033 |
-
110: "None of Them"
|
1034 |
-
}
|
1035 |
-
|
1036 |
-
ONTOLISST_LABEL_NAMES = {
|
1037 |
-
0: 'Demographics',
|
1038 |
-
1: 'Housing and local environment (Housing and environment)',
|
1039 |
-
2: 'Physical health',
|
1040 |
-
3: 'Mental health and mental processes',
|
1041 |
-
4: 'Healthcare',
|
1042 |
-
5: 'Health behaviour (Health and lifestyle)',
|
1043 |
-
6: 'Family and social networks',
|
1044 |
-
7: 'Education',
|
1045 |
-
8: 'Employment and income (Employment and pensions)',
|
1046 |
-
9: 'Expectation, attitudes and beliefs (Attitudes and beliefs)',
|
1047 |
-
10: 'Child development',
|
1048 |
-
11: 'Life events',
|
1049 |
-
12: 'Omics',
|
1050 |
-
13: 'Pregnancy',
|
1051 |
-
14: 'Administration',
|
1052 |
-
15: 'COVID19'
|
1053 |
-
}
|
1054 |
-
|
1055 |
-
EMOTION6_LABEL_NAMES = {
|
1056 |
-
0: "Anger",
|
1057 |
-
1: "Fear",
|
1058 |
-
2: "Disgust",
|
1059 |
-
3: "Sadness",
|
1060 |
-
4: "Joy",
|
1061 |
-
5: "None of Them"
|
1062 |
-
}
|
1063 |
-
|
1064 |
-
EMOTION9_LABEL_NAMES = {
|
1065 |
-
0: "Anger",
|
1066 |
-
1: "Fear",
|
1067 |
-
2: "Disgust",
|
1068 |
-
3: "Sadness",
|
1069 |
-
4: "Joy",
|
1070 |
-
5: "Enthusiasm",
|
1071 |
-
6: "Hope",
|
1072 |
-
7: "Pride",
|
1073 |
-
8: "None of Them",
|
1074 |
-
}
|
1075 |
-
|
1076 |
-
EMOTION9_V2_LABEL_NAMES = {
|
1077 |
-
0: "Anger",
|
1078 |
-
1: "Fear",
|
1079 |
-
2: "Disgust",
|
1080 |
-
3: "Sadness",
|
1081 |
-
4: "Joy",
|
1082 |
-
5: "None of them",
|
1083 |
-
6: "Enthusiasm",
|
1084 |
-
7: "Hope",
|
1085 |
-
8: "Pride"
|
1086 |
-
}
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
from google.cloud import bigquery
|
5 |
+
|
6 |
+
service_account_info = json.loads(os.environ["GCP_SERVICE_ACCOUNT_JSON"])
|
7 |
+
client = bigquery.Client.from_service_account_info(service_account_info)
|
8 |
+
query = "SELECT * FROM `upheld-magpie-314312.codebooks.codebooks_full`"
|
9 |
+
query_job = client.query(query)
|
10 |
+
df_codebooks = query_job.result().to_dataframe()
|
11 |
+
|
12 |
+
|
13 |
+
def get_label_names(df, task):
|
14 |
+
task_df = df[df["task"] == task].sort_values(by="index")
|
15 |
+
label_names_dict = dict(zip(task_df["code"], task_df["name"]))
|
16 |
+
return label_names_dict
|
17 |
+
|
18 |
+
|
19 |
+
def get_num_dict(df, task):
|
20 |
+
task_df = df[df["task"] == task].sort_values(by="index")
|
21 |
+
num_dict = dict(zip(task_df["index"], task_df["code"]))
|
22 |
+
return num_dict
|
23 |
+
|
24 |
+
# NOTE: this is the same logic as in the Babel pipeline (different vairable names!)
|
25 |
+
# key: task type (as in codebooks.codebooks_full)
|
26 |
+
# value: (tuple) name of label_names, num_dict variables
|
27 |
+
# TO-DO: we could replace all of these variables with one dict-like object
|
28 |
+
|
29 |
+
task_names = {
|
30 |
+
"CAP": ("CAP_LABEL_NAMES", "CAP_NUM_DICT"),
|
31 |
+
"CAP_MINOR": ("CAP_MIN_LABEL_NAMES", "CAP_MIN_NUM_DICT"),
|
32 |
+
"CAP_MEDIA": ("CAP_MEDIA_LABEL_NAMES", "CAP_MEDIA_NUM_DICT"),
|
33 |
+
"CAP_MEDIA2": ("CAP_MEDIA2_LABEL_NAMES", "CAP_MEDIA2_DICT"),
|
34 |
+
"CAP_MINOR_MEDIA": ("CAP_MIN_MEDIA_LABEL_NAMES", "CAP_MIN_MEDIA_DICT"),
|
35 |
+
"MANIFESTO": ("MANIFESTO_LABEL_NAMES", "MANIFESTO_NUM_DICT"),
|
36 |
+
"SENTIMENT": ("SENTIMENT_LABEL_NAMES", "SENTIMENT_NUM_DICT"),
|
37 |
+
"EMOTION6": ("EMOTION_LABEL_NAMES", "EMOTION_NUM_DICT"),
|
38 |
+
"EMOTION9": ("EMOTION9_V2_LABEL_NAMES", "EMOTION9_V2_NUM_DICT"),
|
39 |
+
"EMOTION9_LEGACY": ("EMOTION9_LABEL_NAMES", "EMOTION9_NUM_DICT"),
|
40 |
+
"ILLFRAMES_MIGRATION": ("ILLFRAMES_MIGRATION_LABEL_NAMES", "ILLFRAMES_MIGRATION_NUM_DICT"),
|
41 |
+
"ILLFRAMES_COVID": ("ILLFRAMES_COVID_LABEL_NAMES", "ILLFRAMES_COVID_NUM_DICT"),
|
42 |
+
"ILLFRAMES_WAR": ("ILLFRAMES_WAR_LABEL_NAMES", "ILLFRAMES_WAR_NUM_DICT"),
|
43 |
+
"ONTOLISST": ("ONTOLISST_LABEL_NAMES", "ONTOLISST_NUM_DICT"),
|
44 |
+
}
|
45 |
+
|
46 |
+
for task, var_names in task_names.items():
|
47 |
+
label_name_var = var_names[0]
|
48 |
+
num_dict_var = var_names[1]
|
49 |
+
globals()[label_name_var] = get_label_names(df_codebooks, task)
|
50 |
+
globals()[num_dict_var] = get_num_dict(df_codebooks, task)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|