poltextlab commited on
Commit
a115642
·
verified ·
1 Parent(s): ca3a927
Files changed (1) hide show
  1. interfaces/cap_minor.py +2 -2
interfaces/cap_minor.py CHANGED
@@ -32,7 +32,7 @@ domains = {
32
  "local government agenda": "localgovernment"
33
  }
34
 
35
- def convert_minor_to_major(results):
36
  results_as_text = dict()
37
  for i in results:
38
  prob = probs[i]
@@ -73,7 +73,7 @@ def predict(text, model_id, tokenizer_id):
73
 
74
  probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
75
  output_pred_minor = {f"[{CAP_MIN_NUM_DICT[i]}] {CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
76
- output_pred_major = convert_minor_to_major(np.argsort(probs)[::-1])
77
  output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
78
  return output_pred_minor, output_pred_major, output_info
79
 
 
32
  "local government agenda": "localgovernment"
33
  }
34
 
35
+ def convert_minor_to_major(results, probs):
36
  results_as_text = dict()
37
  for i in results:
38
  prob = probs[i]
 
73
 
74
  probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
75
  output_pred_minor = {f"[{CAP_MIN_NUM_DICT[i]}] {CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
76
+ output_pred_major = convert_minor_to_major(np.argsort(probs)[::-1], probs)
77
  output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
78
  return output_pred_minor, output_pred_major, output_info
79