Spaces:
Running
Running
add probs
Browse files- interfaces/cap_minor.py +2 -2
interfaces/cap_minor.py
CHANGED
@@ -32,7 +32,7 @@ domains = {
|
|
32 |
"local government agenda": "localgovernment"
|
33 |
}
|
34 |
|
35 |
-
def convert_minor_to_major(results):
|
36 |
results_as_text = dict()
|
37 |
for i in results:
|
38 |
prob = probs[i]
|
@@ -73,7 +73,7 @@ def predict(text, model_id, tokenizer_id):
|
|
73 |
|
74 |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
75 |
output_pred_minor = {f"[{CAP_MIN_NUM_DICT[i]}] {CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
|
76 |
-
output_pred_major = convert_minor_to_major(np.argsort(probs)[::-1])
|
77 |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
78 |
return output_pred_minor, output_pred_major, output_info
|
79 |
|
|
|
32 |
"local government agenda": "localgovernment"
|
33 |
}
|
34 |
|
35 |
+
def convert_minor_to_major(results, probs):
|
36 |
results_as_text = dict()
|
37 |
for i in results:
|
38 |
prob = probs[i]
|
|
|
73 |
|
74 |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
75 |
output_pred_minor = {f"[{CAP_MIN_NUM_DICT[i]}] {CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
|
76 |
+
output_pred_major = convert_minor_to_major(np.argsort(probs)[::-1], probs)
|
77 |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
78 |
return output_pred_minor, output_pred_major, output_info
|
79 |
|