kovacsvi commited on
Commit
f17fb84
·
1 Parent(s): caa0374

jit test...

Browse files
Files changed (1) hide show
  1. interfaces/cap.py +18 -8
interfaces/cap.py CHANGED
@@ -85,18 +85,28 @@ def build_huggingface_path(language: str, domain: str):
85
 
86
  def predict(text, model_id, tokenizer_id):
87
  device = torch.device("cpu")
88
- model = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN).to(device)
89
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
90
 
91
- inputs = tokenizer(text,
92
- max_length=256,
93
- truncation=True,
94
- padding="do_not_pad",
95
- return_tensors="pt").to(device)
96
  model.eval()
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  with torch.no_grad():
99
- logits = model(**inputs).logits
 
100
  release_model(model, model_id)
101
 
102
  probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
 
85
 
86
  def predict(text, model_id, tokenizer_id):
87
  device = torch.device("cpu")
 
 
88
 
89
+ # Load JIT-traced model
90
+ jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
91
+ model = torch.jit.load(jit_model_path).to(device)
 
 
92
  model.eval()
93
 
94
+ # Load tokenizer (still regular HF)
95
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
96
+
97
+ # Tokenize input
98
+ inputs = tokenizer(
99
+ text,
100
+ max_length=256,
101
+ truncation=True,
102
+ padding="do_not_pad",
103
+ return_tensors="pt"
104
+ )
105
+ inputs = {k: v.to(device) for k, v in inputs.items()}
106
+
107
  with torch.no_grad():
108
+ logits = model(inputs["input_ids"], inputs["attention_mask"]).logits
109
+
110
  release_model(model, model_id)
111
 
112
  probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()