import gradio as gr import spaces import os import torch import numpy as np import pandas as pd from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import torch.nn.functional as F from huggingface_hub import HfApi from collections import defaultdict from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES, CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES, CAP_MIN_MEDIA_NUM_DICT) from .utils import is_disk_full, release_model HF_TOKEN = os.environ["hf_read"] languages = [ "Multilingual", ] domains = { "media": "media" } NUM_TOP_CLASSES = 5 CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values()) CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values()) major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)} minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)} minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)} major_to_minor_map = defaultdict(list) for code in CAP_MIN_CODES: major_id = int(str(code)[:-2]) major_to_minor_map[major_id].append(code) major_to_minor_map = dict(major_to_minor_map) def normalize_probs(probs: dict) -> dict: total = sum(probs.values()) return {k: v / total for k, v in probs.items()} def check_huggingface_path(checkpoint_path: str): try: hf_api = HfApi(token=HF_TOKEN) hf_api.model_info(checkpoint_path, token=HF_TOKEN) return True except: return False def build_huggingface_path(language: str, domain: str, hierarchical: bool): if hierarchical: return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3") else: return "poltextlab/xlm-roberta-large-pooled-cap-media-minor" #@spaces.GPU(duration=30) def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None): device = torch.device("cpu") # Load major and minor models + tokenizer major_model = AutoModelForSequenceClassification.from_pretrained( major_model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN ).to(device) minor_model = AutoModelForSequenceClassification.from_pretrained( minor_model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN ).to(device) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # Tokenize input inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) # Predict major topic major_model.eval() with torch.no_grad(): major_logits = major_model(**inputs).logits major_probs = F.softmax(major_logits, dim=-1) major_probs_np = major_probs.cpu().numpy().flatten() top_major_index = int(np.argmax(major_probs_np)) top_major_id = major_index_to_id[top_major_index] # Default: show major topic predictions filtered_probs = { i: float(major_probs_np[i]) for i in np.argsort(major_probs_np)[::-1] } filtered_probs = normalize_probs(filtered_probs) output_pred = { f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[major_index_to_id[k]]}": v for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True) } # If eligible for minor prediction if top_major_id in major_to_minor_map: valid_minor_ids = major_to_minor_map[top_major_id] minor_model.eval() with torch.no_grad(): minor_logits = minor_model(**inputs).logits minor_probs = F.softmax(minor_logits, dim=-1) release_model(major_model, major_model_id) release_model(minor_model, minor_model_id) print(minor_probs) # debug # Restrict to valid minor codes valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index] filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices} print(filtered_probs) # debug filtered_probs = normalize_probs(filtered_probs) print(filtered_probs) # debug output_pred = { f"[{top_major_id}] {CAP_MEDIA_LABEL_NAMES[top_major_id]} [{k}] {CAP_MIN_LABEL_NAMES[k]}": v for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True) } output_info = f'
Prediction used {major_model_id} and {minor_model_id}.
' interpretation_info = """ ## How to Interpret These Values (Hierarchical Classification) This method returns either: - A list of **major (media) topic confidences**, or - A list of **minor topic confidences**. In the case of minor topics, the values are the confidences for minor topics **within a given major topic**, and they are **normalized to sum to 1**. """ return interpretation_info, output_pred, output_info def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None): device = torch.device("cpu") # Load JIT-traced model jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt" model = torch.jit.load(jit_model_path).to(device) model.eval() # Load tokenizer (still regular HF) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # Tokenize input inputs = tokenizer( text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt" ) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): output = model(inputs["input_ids"], inputs["attention_mask"]) print(output) # debug logits = output["logits"] release_model(model, model_id) probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() top_indices = np.argsort(probs)[::-1][:10] CAP_MIN_MEDIA_LABEL_NAMES = CAP_MEDIA_LABEL_NAMES | CAP_MIN_LABEL_NAMES output_pred = {} for i in top_indices: code = CAP_MIN_MEDIA_NUM_DICT[i] prob = probs[i] if code in CAP_MEDIA_LABEL_NAMES: # Media (major) topic label = CAP_MEDIA_LABEL_NAMES[code] display = f"[{code}] {label}" else: # Minor topic major_code = code // 100 major_label = CAP_MEDIA_LABEL_NAMES[major_code] minor_label = CAP_MIN_LABEL_NAMES[code] display = f"[{major_code}] {major_label} [{code}] {minor_label}" output_pred[display] = prob interpretation_info = """ ## How to Interpret These Values (Flat Classification) This method returns predictions made by a single model. Both media codes and minor topics may appear in the output list. **Only the top 10 most confident labels are displayed**. """ output_info = f'Prediction was made using the {model_id} model.
' return interpretation_info, output_pred, output_info def predict_cap(tmp, method, text, language, domain): if is_disk_full(): os.system('rm -rf /data/models*') os.system('rm -r ~/.cache/huggingface/hub') domain = domains[domain] if method == "Hierarchical Classification": major_model_id, minor_model_id = build_huggingface_path(language, domain, True) tokenizer_id = "xlm-roberta-large" return predict(text, major_model_id, minor_model_id, tokenizer_id) else: model_id = build_huggingface_path(language, domain, False) tokenizer_id = "xlm-roberta-large" return predict_flat(text, model_id, tokenizer_id) description = """ You can choose between two approaches for making predictions: **1. Hierarchical Classification** First, the model predicts a **major topic**. Then, a second model selects the most probable **subtopic** from within that major topic's category. **2. Flat Classification (single model)** A single model directly predicts the most relevant label from all available classes (both media and minor topics). """ demo = gr.Interface( title="CAP Media/Minor Topics Babel Demo", fn=predict_cap, inputs=[gr.Markdown(description), gr.Radio( choices=["Hierarchical Classification", "Flat Classification"], label="Prediction Mode", value="Hierarchical Classification" ), gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language", value=languages[0]), gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])], outputs=[gr.Markdown(), gr.Label(label="Output"), gr.Markdown()])