import gradio as gr import os import torch import numpy as np from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi from label_dicts import EMOTION9_LABEL_NAMES from .utils import is_disk_full, release_model HF_TOKEN = os.environ["hf_read"] languages = [ "Czech", "English", "German", "Hungarian", "Polish", "Slovak" ] domains = { "parliamentary speech": "parlspeech", } def build_huggingface_path(language: str): language = language.lower() return f"poltextlab/xlm-roberta-large-pooled-{language}-emotions9" def predict(text, model_id, tokenizer_id): device = torch.device("cpu") # Load JIT-traced model jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt" model = torch.jit.load(jit_model_path).to(device) model.eval() # Load tokenizer (still regular HF) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # Tokenize input inputs = tokenizer( text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt" ) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): output = model(inputs["input_ids"], inputs["attention_mask"]) print(output) # debug logits = output["logits"] release_model(model, model_id) probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() NUMS_DICT = {i: key for i, key in enumerate(sorted(EMOTION9_LABEL_NAMES.keys()))} output_pred = {f"[{NUMS_DICT[i]}] {EMOTION9_LABEL_NAMES[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]} output_info = f'

Prediction was made using the {model_id} model.

' return output_pred, output_info def predict_e6(text, language, domain): model_id = build_huggingface_path(language) tokenizer_id = "xlm-roberta-large" if is_disk_full(): os.system('rm -rf /data/models*') os.system('rm -r ~/.cache/huggingface/hub') return predict(text, model_id, tokenizer_id) demo = gr.Interface( title="Emotions (9) Babel Demo", fn=predict_e6, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language", value=languages[1]), gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])], outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])