import gradio as gr import os import torch import numpy as np from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi HF_TOKEN = os.environ["hf_read"] languages = [ "English" ] from label_dicts import ONTOLISST_LABEL_NAMES from .utils import is_disk_full, release_model # --- DEBUG --- import shutil def convert_size(size): for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']: if size < 1024: return f"{size:.2f} {unit}" size /= 1024 def get_disk_space(path="/"): total, used, free = shutil.disk_usage(path) return { "Total": convert_size(total), "Used": convert_size(used), "Free": convert_size(free) } # --- def build_huggingface_path(language: str): return "poltextlab/xlm-roberta-large_ontolisst_v1" def predict(text, model_id, tokenizer_id): device = torch.device("cpu") # Load JIT-traced model jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt" model = torch.jit.load(jit_model_path).to(device) model.eval() # Load tokenizer (still regular HF) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # Tokenize input inputs = tokenizer( text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt" ) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): output = model(inputs["input_ids"], inputs["attention_mask"]) print(output) # debug logits = output["logits"] release_model(model, model_id) probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() predicted_class_id = probs.argmax() predicted_class_id = {4: 2, 5: 1}.get(predicted_class_id, 0) output_pred = ONTOLISST_LABEL_NAMES.get(predicted_class_id, predicted_class_id) output_info = f'

Prediction was made using the {model_id} model.

' return output_pred, output_info def predict_cap(text, language): model_id = build_huggingface_path(language) tokenizer_id = "xlm-roberta-large" if is_disk_full(): os.system('rm -rf /data/models*') os.system('rm -r ~/.cache/huggingface/hub') return predict(text, model_id, tokenizer_id) demo = gr.Interface( title="ONTOLISST Babel Demo", fn=predict_cap, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language", value=languages[0])], outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])