Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import spacy | |
| import spaces | |
| import numpy as np | |
| import pandas as pd | |
| from transformers import AutoModelForSequenceClassification | |
| from transformers import AutoTokenizer | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| from matplotlib.colors import LinearSegmentedColormap | |
| import plotly.express as px | |
| import seaborn as sns | |
| PATH = '/data/' # at least 150GB storage needs to be attached | |
| os.environ['TRANSFORMERS_CACHE'] = PATH | |
| os.environ['HF_HOME'] = PATH | |
| os.environ['HF_DATASETS_CACHE'] = PATH | |
| os.environ['TORCH_HOME'] = PATH | |
| HF_TOKEN = os.environ["hf_read"] | |
| SENTIMENT_LABEL_NAMES = {0: "Negative", 1: "No sentiment or Neutral sentiment", 2: "Positive"} | |
| LANGUAGES = ["Czech", "English", "French", "German", "Hungarian", "Polish", "Slovakian"] | |
| id2label = { | |
| 0: "Anger", | |
| 1: "Fear", | |
| 2: "Disgust", | |
| 3: "Sadness", | |
| 4: "Joy", | |
| 5: "None of Them" | |
| } | |
| def load_spacy_model(model_name="xx_sent_ud_sm"): | |
| try: | |
| model = spacy.load(model_name) | |
| except OSError: | |
| spacy.cli.download(model_name) | |
| model = spacy.load(model_name) | |
| return model | |
| def split_sentences(text, model): | |
| # disable pipeline components not necessary for splitting | |
| model.disable_pipes(model.pipe_names) # first disable all the pipes | |
| model.enable_pipe("senter") # then enable the sentence splitter only | |
| doc = model(text) | |
| sentences = [sent.text for sent in doc.sents] | |
| return sentences | |
| def build_huggingface_path(language: str): | |
| if language == "Czech" or language == "Slovakian": | |
| return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4" | |
| return "poltextlab/xlm-roberta-large-pooled-MORES" | |
| def predict(text, model_id, tokenizer_id): | |
| model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) | |
| tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
| inputs = tokenizer(text, | |
| max_length=64, | |
| truncation=True, | |
| padding="do_not_pad", | |
| return_tensors="pt") | |
| model.eval() | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() | |
| return probs | |
| def get_most_probable_label(probs): | |
| label = id2label[probs.argmax()] | |
| probability = f"{round(100 * probs.max(), 2)}%" | |
| return label, probability | |
| def prepare_heatmap_data(data): | |
| heatmap_data = pd.DataFrame(0.0, index=id2label.values(), columns=range(len(data))) | |
| for idx, row in enumerate(data): | |
| confidences = row["emotions"].tolist() | |
| for idy, confidence in enumerate(confidences): | |
| emotion = id2label[idy] | |
| heatmap_data.at[emotion, idx] = round(confidence, 4) | |
| heatmap_data.columns = [item["sentence"][:18]+"..." for item in data] | |
| return heatmap_data | |
| def plot_emotion_heatmap(heatmap_data): | |
| heatmap_data = heatmap_data.T | |
| fig = plt.figure(figsize=(len(heatmap_data.columns) * 0.5 + 4, len(heatmap_data.index) * 0.5 + 2)) | |
| cmap = LinearSegmentedColormap.from_list("white_to_grey", ["#ffffff", "#aaaaaa"]) | |
| sns.heatmap( | |
| heatmap_data, | |
| annot=False, | |
| cmap=cmap, | |
| cbar=True, | |
| linewidths=0.5, | |
| linecolor='gray', | |
| vmin=0, | |
| vmax=1 | |
| ) | |
| plt.xlabel("Emotions") | |
| plt.ylabel("Sentences") | |
| plt.xticks(rotation=0, ha='center') | |
| plt.yticks(rotation=0) | |
| plt.tight_layout() | |
| return fig | |
| def plot_sunburst_chart(heatmap_data): | |
| data = [] | |
| for item in heatmap_data: | |
| sentence = item['sentence'] | |
| emotions = item['emotions'] | |
| sentence_wrapped = "\n".join([sentence[i:i + 50] for i in range(0, len(sentence), 50)]) | |
| for i, score in enumerate(emotions): | |
| data.append({ | |
| 'sentence': sentence_wrapped, | |
| 'emotion': id2label[i], | |
| 'score': float(score) | |
| }) | |
| df = pd.DataFrame(data) | |
| fig = px.sunburst( | |
| df, | |
| path=['sentence', 'emotion'], | |
| values='score', | |
| color='emotion', | |
| hover_data={'score': ':.3f'}, | |
| title='Sentence-Level Emotion Confidence' | |
| ) | |
| fig.update_layout( | |
| width=800, | |
| height=800, | |
| margin=dict(t=50, l=0, r=0, b=0) | |
| ) | |
| return fig | |
| def plot_emotion_barplot(heatmap_data): | |
| most_probable_emotions = heatmap_data.idxmax(axis=0) | |
| emotion_counts = most_probable_emotions.value_counts() | |
| all_emotions = heatmap_data.index | |
| emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False) | |
| fig, ax = plt.subplots(figsize=(8, 6)) | |
| sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette="coolwarm", ax=ax) | |
| ax.set_title("Relative Frequencies of Predicted Emotions") | |
| ax.set_xlabel("Relative Frequency") | |
| ax.set_ylabel("Emotions") | |
| plt.tight_layout() | |
| return fig | |
| def predict_wrapper(text, language): | |
| model_id = build_huggingface_path(language) | |
| tokenizer_id = "xlm-roberta-large" | |
| spacy_model = load_spacy_model() | |
| sentences = split_sentences(text, spacy_model) | |
| results = [] | |
| results_heatmap = [] | |
| for sentence in sentences: | |
| probs = predict(sentence, model_id, tokenizer_id) | |
| label, probability = get_most_probable_label(probs) | |
| results.append([sentence, label, probability]) | |
| results_heatmap.append({"sentence":sentence, "emotions":probs}) | |
| # let's see... | |
| print(results) | |
| print(results_heatmap) | |
| figure = plot_emotion_barplot(prepare_heatmap_data(results_heatmap)) | |
| heatmap = plot_emotion_heatmap(prepare_heatmap_data(results_heatmap)) | |
| output_info = f'Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.' | |
| return results, figure, sunburst_chart, heatmap, output_info | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(lines=6, label="Input", placeholder="Enter your text here...") | |
| with gr.Column(): | |
| with gr.Row(): | |
| language_choice = gr.Dropdown(choices=LANGUAGES, label="Language", value="English") | |
| with gr.Row(): | |
| predict_button = gr.Button("Submit") | |
| with gr.Row(): | |
| result_table = gr.Dataframe( | |
| headers=["Sentence", "Prediction", "Confidence"], | |
| column_widths=["65%", "25%", "10%"], | |
| wrap=True # important | |
| ) | |
| with gr.Row(): | |
| plot = gr.Plot() | |
| with gr.Row(): | |
| sunburst_chart = gr.Plot() | |
| with gr.Row(): | |
| heatmap = gr.Plot() | |
| with gr.Row(): | |
| model_info = gr.Markdown() | |
| predict_button.click( | |
| fn=predict_wrapper, | |
| inputs=[input_text, language_choice], | |
| outputs=[result_table, plot, sunburst_chart, heatmap, model_info] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |