rongo1
feat: trying to fix localhost issue
3b89417
import gradio as gr
import google.generativeai as genai
import json
import pandas as pd
from datetime import datetime
import os
from pathlib import Path
from PIL import Image
import io
import base64
import logging
import sys
import tempfile
# Import and register HEIF support
try:
from pillow_heif import register_heif_opener
register_heif_opener()
HEIF_SUPPORTED = True
except ImportError:
HEIF_SUPPORTED = False
logging.warning("pillow-heif not installed. HEIF/HEIC support disabled.")
# Import Google Drive functionality
from google_funcs import (
get_drive_service,
upload_excel_to_exports_folder,
upload_image_to_images_folder,
list_files_in_folder,
download_file_from_drive,
get_existing_cumulative_file,
cleanup_duplicate_cumulative_files,
delete_file_from_drive
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# Configure AI API
logger.info("Configuring AI API")
gemini_api_key = os.getenv("Gemini_API")
if not gemini_api_key:
logger.error("Gemini_API environment variable not found!")
logger.error("Please set the Gemini_API environment variable with your AI API key")
raise ValueError("❌ Gemini_API environment variable is required. Please set it in your environment.")
genai.configure(api_key=gemini_api_key)
logger.info("AI API configured successfully")
# Initialize Google Drive service
logger.info("Initializing Google Drive service")
try:
drive_service = get_drive_service()
logger.info("Google Drive service initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Google Drive service: {e}")
logger.error("Please ensure GOOGLE_CLIENT_ID and GOOGLE_CLIENT_SECRET environment variables are set")
raise ValueError("❌ Google Drive credentials are required. Please set GOOGLE_CLIENT_ID and GOOGLE_CLIENT_SECRET environment variables.")
# Log startup
logger.info("Business Card Data Extractor starting up with Google Drive storage")
def upload_to_google_drive(file_path, is_excel=False, filename=None):
"""Upload a file to Google Drive"""
try:
if is_excel:
logger.info(f"Uploading Excel file to Google Drive: {filename or file_path}")
result = upload_excel_to_exports_folder(drive_service, file_path=file_path, filename=filename)
else:
logger.info(f"Uploading image file to Google Drive: {filename or file_path}")
result = upload_image_to_images_folder(drive_service, file_path=file_path, filename=filename)
if result:
logger.info(f"Successfully uploaded to Google Drive: {result['webViewLink']}")
return result
else:
logger.error("Failed to upload to Google Drive")
return None
except Exception as e:
logger.error(f"Failed to upload to Google Drive: {e}")
return None
def upload_bytes_to_google_drive(file_data, filename, is_excel=False):
"""Upload file data (bytes) to Google Drive"""
try:
if is_excel:
logger.info(f"Uploading Excel data to Google Drive: {filename}")
result = upload_excel_to_exports_folder(drive_service, file_data=file_data, filename=filename)
else:
logger.info(f"Uploading image data to Google Drive: {filename}")
result = upload_image_to_images_folder(drive_service, file_data=file_data, filename=filename)
if result:
logger.info(f"Successfully uploaded to Google Drive: {result['webViewLink']}")
return result
else:
logger.error("Failed to upload to Google Drive")
return None
except Exception as e:
logger.error(f"Failed to upload to Google Drive: {e}")
return None
def extract_business_card_data_batch(images, filenames, model_name="gemini-2.5-flash"):
"""Extract data from multiple business card images in a single API call"""
logger.info(f"Starting batch extraction for {len(images)} images using model: {model_name}")
logger.debug(f"Filenames in batch: {filenames}")
# Load prompts
logger.debug("Loading prompt templates")
try:
with open("prompts/prompt.txt", "r", encoding="utf-8") as f:
prompt_template = f.read()
logger.debug(f"Loaded prompt template ({len(prompt_template)} characters)")
with open("prompts/system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
logger.debug(f"Loaded system prompt ({len(system_prompt)} characters)")
except FileNotFoundError as e:
logger.error(f"Failed to load prompt files: {e}")
raise
# Configure model
logger.debug(f"Configuring AI model: {model_name}")
generation_config = {
"temperature": 0.1,
"response_mime_type": "application/json"
}
try:
model = genai.GenerativeModel(
model_name=model_name,
generation_config=generation_config,
system_instruction=system_prompt
)
logger.debug("AI model configured successfully")
except Exception as e:
logger.error(f"Failed to configure AI model: {e}")
raise
# Prepare multiple images for the model
logger.debug("Preparing content parts for API request")
content_parts = []
# Add the prompt first
batch_prompt = f"""
{prompt_template}
I'm sending you {len(images)} business card images. Please extract the data from each card and return a JSON array with {len(images)} objects. Each object should contain the extracted data for one business card in the same order as the images.
Return format: [card1_data, card2_data, card3_data, ...]
"""
content_parts.append(batch_prompt)
logger.debug(f"Added batch prompt ({len(batch_prompt)} characters)")
# Add each image
logger.debug("Converting and adding images to request")
for i, image in enumerate(images):
try:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
image_part = {
"mime_type": "image/png",
"data": img_base64
}
content_parts.append(f"Business Card {i+1}:")
content_parts.append(image_part)
logger.debug(f"Added image {i+1} ({len(img_base64)} base64 characters)")
except Exception as e:
logger.error(f"Failed to process image {i+1} ({filenames[i] if i < len(filenames) else 'unknown'}): {e}")
raise
# Generate content
logger.info(f"Making API call to {model_name} with {len(content_parts)} content parts")
try:
response = model.generate_content(content_parts)
logger.info(f"API call successful. Response length: {len(response.text) if response.text else 0} characters")
logger.debug(f"Raw response: {response.text[:500]}..." if len(response.text) > 500 else f"Raw response: {response.text}")
except Exception as e:
logger.error(f"API call failed: {e}")
raise
# Parse response
logger.debug("Parsing JSON response")
try:
# Parse JSON response
response_data = json.loads(response.text)
logger.info(f"Successfully parsed JSON response")
# Ensure we got an array
if not isinstance(response_data, list):
logger.debug("Response is not an array, converting to array")
response_data = [response_data]
logger.info(f"Response contains {len(response_data)} extracted card data objects")
# Add metadata to each card's data
logger.debug("Adding metadata to extracted data")
for i, data in enumerate(response_data):
# Use user-friendly model name for Excel
data['method'] = "Speed-Optimized model" if "flash" in model_name else "Accuracy-Optimized model"
if i < len(filenames):
data['filename'] = filenames[i]
logger.debug(f"Added metadata to card {i+1}: {filenames[i]}")
logger.info(f"Batch extraction completed successfully for {len(response_data)} cards")
return response_data
except json.JSONDecodeError as e:
logger.warning(f"Initial JSON parsing failed: {e}. Attempting to clean response.")
# Try to clean the response
text = response.text.strip()
if text.startswith("```json"):
text = text[7:]
logger.debug("Removed ```json prefix")
if text.endswith("```"):
text = text[:-3]
logger.debug("Removed ``` suffix")
try:
response_data = json.loads(text.strip())
logger.info("Successfully parsed cleaned JSON response")
# Ensure we got an array
if not isinstance(response_data, list):
logger.debug("Cleaned response is not an array, converting to array")
response_data = [response_data]
logger.info(f"Cleaned response contains {len(response_data)} extracted card data objects")
# Add metadata to each card's data
logger.debug("Adding metadata to cleaned extracted data")
for i, data in enumerate(response_data):
# Use user-friendly model name for Excel
data['method'] = "Speed-Optimized model" if "flash" in model_name else "Accuracy-Optimized model"
if i < len(filenames):
data['filename'] = filenames[i]
logger.debug(f"Added metadata to cleaned card {i+1}: {filenames[i]}")
logger.info(f"Batch extraction completed successfully after cleaning for {len(response_data)} cards")
return response_data
except json.JSONDecodeError as e2:
logger.error(f"Failed to parse even cleaned JSON response: {e2}")
logger.error(f"Cleaned text: {text[:1000]}...")
raise
def extract_business_card_data(image, model_name="gemini-2.5-flash"):
"""Extract data from single business card image - legacy function"""
logger.debug(f"Single card extraction called with model: {model_name}")
result = extract_business_card_data_batch([image], ["single_card"], model_name)
if result:
logger.debug("Single card extraction successful")
return result[0]
else:
logger.warning("Single card extraction returned no results")
return None
def convert_image_for_processing(image, filename):
"""Convert image to RGB JPEG format for better compatibility"""
try:
# Convert to RGB if necessary (HEIF images might be in different modes)
if image.mode != 'RGB':
image = image.convert('RGB')
# Create a buffer for the converted image
buffer = io.BytesIO()
image.save(buffer, format='JPEG', quality=95)
buffer.seek(0)
# Return the converted image
return Image.open(buffer)
except Exception as e:
logger.warning(f"Could not convert {filename}: {str(e)}. Using original image.")
return image
def process_business_cards(images, model_name="gemini-2.5-flash", save_images=True):
"""Process multiple business card images and create both current run and cumulative Excel files"""
logger.info(f"Starting business card processing session")
logger.info(f"Number of images received: {len(images) if images else 0}")
logger.info(f"Model selected: {model_name}")
logger.info(f"Save images option: {save_images}")
if not images:
logger.warning("No images provided for processing")
return None, None, "Please upload at least one business card image.", None
all_data = []
errors = []
# Prepare images for batch processing
logger.info("Preparing images for batch processing")
image_batches = []
filename_batches = []
batch_size = 5
logger.debug(f"Using batch size: {batch_size}")
# Load and group images into batches of 5
loaded_images = []
filenames = []
uploaded_image_links = []
logger.info(f"Loading {len(images)} images")
for idx, image_path in enumerate(images):
try:
# Load image
if isinstance(image_path, str):
logger.debug(f"Loading image {idx+1}: {image_path}")
image = Image.open(image_path)
filename = os.path.basename(image_path)
else:
logger.debug(f"Using direct image object {idx+1}")
image = image_path
filename = f"image_{idx+1}.png"
# Convert image for better compatibility (especially for HEIF/HEIC)
converted_image = convert_image_for_processing(image, filename)
loaded_images.append(converted_image)
filenames.append(filename)
logger.debug(f"Successfully loaded image {idx+1}: {filename} (size: {converted_image.size})")
except Exception as e:
error_msg = f"Error loading {image_path}: {str(e)}"
logger.error(error_msg)
errors.append(error_msg)
logger.info(f"Successfully loaded {len(loaded_images)} out of {len(images)} images")
# Save images to Google Drive if requested
if save_images and loaded_images:
logger.info(f"Saving {len(loaded_images)} images to Google Drive")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
for i, (image, filename) in enumerate(zip(loaded_images, filenames)):
try:
# Create unique filename with timestamp
name, ext = os.path.splitext(filename)
if not ext:
ext = '.png'
unique_filename = f"{timestamp}_{i+1:03d}_{name}{ext}"
# Convert image to bytes
img_buffer = io.BytesIO()
image.save(img_buffer, format='PNG')
img_bytes = img_buffer.getvalue()
# Upload to Google Drive
result = upload_bytes_to_google_drive(img_bytes, unique_filename, is_excel=False)
if result:
uploaded_image_links.append(result['webViewLink'])
logger.debug(f"Saved image {i+1}: {unique_filename}")
else:
uploaded_image_links.append(None)
logger.error(f"Failed to upload image {unique_filename}")
except Exception as e:
logger.error(f"Failed to save image {filename}: {e}")
uploaded_image_links.append(None)
logger.info(f"Successfully uploaded {sum(1 for link in uploaded_image_links if link)} images to Google Drive")
# Group into batches
logger.info(f"Grouping {len(loaded_images)} images into batches of {batch_size}")
for i in range(0, len(loaded_images), batch_size):
batch_images = loaded_images[i:i + batch_size]
batch_filenames = filenames[i:i + batch_size]
image_batches.append(batch_images)
filename_batches.append(batch_filenames)
logger.debug(f"Created batch {len(image_batches)} with {len(batch_images)} images: {batch_filenames}")
logger.info(f"Created {len(image_batches)} batches for processing")
# Process each batch
logger.info(f"Starting processing of {len(image_batches)} batches")
for batch_idx, (batch_images, batch_filenames) in enumerate(zip(image_batches, filename_batches)):
try:
logger.info(f"Processing batch {batch_idx + 1}/{len(image_batches)} ({len(batch_images)} cards)")
print(f"Processing batch {batch_idx + 1}/{len(image_batches)} ({len(batch_images)} cards)")
# Extract data for the entire batch
logger.debug(f"Calling batch extraction for batch {batch_idx + 1}")
batch_data = extract_business_card_data_batch(batch_images, batch_filenames, model_name)
logger.info(f"Batch {batch_idx + 1} extraction completed, got {len(batch_data)} results")
# Process each card's data in the batch
logger.debug(f"Processing individual card data for batch {batch_idx + 1}")
for i, data in enumerate(batch_data):
card_filename = batch_filenames[i] if i < len(batch_filenames) else f"card_{i+1}"
logger.debug(f"Processing card data for: {card_filename}")
# Add timestamp to data
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
data['processed_date'] = timestamp
logger.debug(f"Added timestamp {timestamp} to {card_filename}")
# Add Google Drive image link if images were saved
global_index = batch_idx * batch_size + i
if save_images and global_index < len(uploaded_image_links) and uploaded_image_links[global_index]:
data['google_drive_image_link'] = uploaded_image_links[global_index]
logger.debug(f"Added Google Drive image link for {card_filename}: {uploaded_image_links[global_index]}")
else:
data['google_drive_image_link'] = None
# Handle multiple values (emails, phones) by joining with commas
list_fields_processed = []
for key, value in data.items():
if isinstance(value, list):
original_count = len(value)
data[key] = ', '.join(str(v) for v in value)
list_fields_processed.append(f"{key}({original_count})")
logger.debug(f"Combined {original_count} {key} values for {card_filename}")
if list_fields_processed:
logger.debug(f"List fields processed for {card_filename}: {list_fields_processed}")
# Combine phone fields if they exist separately
if 'mobile_phones' in data and data['mobile_phones']:
logger.debug(f"Combining phone fields for {card_filename}")
if data.get('phones'):
# Combine mobile and regular phones
existing_phones = str(data['phones']) if data['phones'] else ""
mobile_phones = str(data['mobile_phones']) if data['mobile_phones'] else ""
combined = [p for p in [existing_phones, mobile_phones] if p and p != 'null']
data['phones'] = ', '.join(combined)
logger.debug(f"Combined phones for {card_filename}: {data['phones']}")
else:
data['phones'] = data['mobile_phones']
logger.debug(f"Used mobile phones as phones for {card_filename}: {data['phones']}")
del data['mobile_phones'] # Remove separate mobile field
# Combine address fields if they exist separately
if 'street' in data and data['street']:
logger.debug(f"Combining address fields for {card_filename}")
if data.get('address'):
# If both exist, combine them
if str(data['street']) != str(data['address']) and data['street'] != 'null':
original_address = data['address']
data['address'] = f"{data['street']}, {data['address']}"
logger.debug(f"Combined address for {card_filename}: '{data['street']}' + '{original_address}' = '{data['address']}'")
else:
data['address'] = data['street']
logger.debug(f"Used street as address for {card_filename}: {data['address']}")
del data['street'] # Remove separate street field
all_data.append(data)
logger.debug(f"Added processed data for {card_filename} to results (total: {len(all_data)})")
logger.info(f"Completed processing batch {batch_idx + 1}, total cards processed so far: {len(all_data)}")
except Exception as e:
batch_filenames_str = ', '.join(batch_filenames)
error_msg = f"Error processing batch {batch_idx + 1} ({batch_filenames_str}): {str(e)}"
logger.error(error_msg)
errors.append(error_msg)
if not all_data:
logger.warning("No data could be extracted from any images")
error_summary = "No data could be extracted from the images.\n" + "\n".join(errors)
return None, None, error_summary, None
logger.info(f"Successfully extracted data from {len(all_data)} business cards")
# Create DataFrame for current run
logger.info("Creating DataFrame for current run")
current_df = pd.DataFrame(all_data)
logger.debug(f"Current run DataFrame created with {len(current_df)} rows and {len(current_df.columns)} columns")
logger.debug(f"Columns: {list(current_df.columns)}")
# Generate timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
logger.debug(f"Generated timestamp: {timestamp}")
# Create temporary files for Excel generation
with tempfile.NamedTemporaryFile(suffix='.xlsx', delete=False) as current_temp:
current_temp_path = current_temp.name
with tempfile.NamedTemporaryFile(suffix='.xlsx', delete=False) as cumulative_temp:
cumulative_temp_path = cumulative_temp.name
current_filename = f"current_run_{timestamp}.xlsx"
cumulative_filename = "all_business_cards_total.xlsx"
# Download and merge existing cumulative data from Google Drive
logger.info("Checking for existing cumulative file in Google Drive")
cumulative_df = current_df # Default to current data
try:
# Clean up any duplicate cumulative files first
duplicates_removed = cleanup_duplicate_cumulative_files(drive_service)
if duplicates_removed > 0:
logger.info(f"Cleaned up {duplicates_removed} duplicate cumulative files")
# Get the existing cumulative file
existing_file = get_existing_cumulative_file(drive_service)
if existing_file:
logger.info(f"Existing cumulative file found: {existing_file['name']} (ID: {existing_file['id']})")
# Create temporary file for download
with tempfile.NamedTemporaryFile(suffix='.xlsx', delete=False) as existing_temp:
existing_temp_path = existing_temp.name
# Download existing file
if download_file_from_drive(drive_service, existing_file['id'], existing_temp_path):
logger.info("Successfully downloaded existing cumulative file")
try:
# Read existing data
existing_df = pd.read_excel(existing_temp_path)
logger.info(f"Loaded existing data: {len(existing_df)} rows")
# Merge with current data
cumulative_df = pd.concat([existing_df, current_df], ignore_index=True)
logger.info(f"Merged data: {len(existing_df)} existing + {len(current_df)} new = {len(cumulative_df)} total rows")
# Delete the old file from Google Drive since we'll upload a new one
delete_file_from_drive(drive_service, existing_file['id'])
logger.info("Deleted old cumulative file from Google Drive")
except Exception as e:
logger.error(f"Failed to read existing Excel file: {e}")
logger.info("Using current data only")
cumulative_df = current_df
finally:
# Clean up temporary file
try:
os.unlink(existing_temp_path)
except:
pass
else:
logger.warning("Failed to download existing cumulative file, using current data only")
cumulative_df = current_df
else:
logger.info("No existing cumulative file found, using current data only")
cumulative_df = current_df
except Exception as e:
logger.warning(f"Error handling existing cumulative data: {e}")
logger.info("Using current data only")
cumulative_df = current_df
# Write current run Excel file
logger.info(f"Creating current run Excel file: {current_filename}")
try:
with pd.ExcelWriter(current_temp_path, engine='openpyxl') as writer:
current_df.to_excel(writer, index=False, sheet_name='Current Run')
logger.debug(f"Written {len(current_df)} rows to 'Current Run' sheet")
# Auto-adjust column widths
logger.debug("Auto-adjusting column widths for current run file")
worksheet = writer.sheets['Current Run']
for column in current_df:
column_length = max(current_df[column].astype(str).map(len).max(), len(column))
col_idx = current_df.columns.get_loc(column)
final_width = min(column_length + 2, 50)
worksheet.column_dimensions[chr(65 + col_idx)].width = final_width
logger.info(f"Current run Excel file created locally")
# Upload current run file to Google Drive
current_result = upload_to_google_drive(current_temp_path, is_excel=True, filename=current_filename)
if current_result:
logger.info(f"Current run file uploaded to Google Drive: {current_result['webViewLink']}")
except Exception as e:
logger.error(f"Failed to create current run Excel file: {e}")
raise
# Write cumulative Excel file
logger.info(f"Creating cumulative Excel file: {cumulative_filename}")
try:
with pd.ExcelWriter(cumulative_temp_path, engine='openpyxl') as writer:
cumulative_df.to_excel(writer, index=False, sheet_name='All Business Cards')
logger.debug(f"Written {len(cumulative_df)} rows to 'All Business Cards' sheet")
# Auto-adjust column widths
logger.debug("Auto-adjusting column widths for cumulative file")
worksheet = writer.sheets['All Business Cards']
for column in cumulative_df:
column_length = max(cumulative_df[column].astype(str).map(len).max(), len(column))
col_idx = cumulative_df.columns.get_loc(column)
final_width = min(column_length + 2, 50)
worksheet.column_dimensions[chr(65 + col_idx)].width = final_width
logger.info(f"Cumulative Excel file created locally")
# Upload cumulative file to Google Drive
cumulative_result = upload_to_google_drive(cumulative_temp_path, is_excel=True, filename=cumulative_filename)
if cumulative_result:
logger.info(f"Cumulative file uploaded to Google Drive: {cumulative_result['webViewLink']}")
except Exception as e:
logger.error(f"Failed to create cumulative Excel file: {e}")
raise
# Note: Don't delete temp files here - Gradio needs them for download
# Gradio will handle cleanup automatically
# Create summary message
logger.info("Creating summary message")
num_batches = len(image_batches) if 'image_batches' in locals() else 1
summary = f"Successfully processed {len(all_data)} business card(s) in {num_batches} batch(es) of up to 5 cards.\n"
model_display = "Speed-Optimized model" if "flash" in model_name else "Accuracy-Optimized model"
summary += f"πŸ€– AI Model used: {model_display}\n"
summary += f"⚑ API calls made: {num_batches} (instead of {len(all_data)})\n"
if save_images:
num_uploaded = sum(1 for link in uploaded_image_links if link) if 'uploaded_image_links' in locals() else 0
summary += f"πŸ’Ύ Images uploaded to Google Drive: {num_uploaded} cards\n\n"
else:
summary += f"πŸ’Ύ Images uploaded to Google Drive: No (save option was disabled)\n\n"
summary += f"πŸ“ Current run file: {current_filename} (uploaded to Google Drive)\n"
summary += f"πŸ“Š Total cumulative file: {cumulative_filename} (uploaded to Google Drive)\n"
summary += f"πŸ“Š Total cards in database: {len(cumulative_df)}\n"
# Add cleanup information
if 'duplicates_removed' in locals() and duplicates_removed > 0:
summary += f"🧹 Cleaned up {duplicates_removed} duplicate cumulative files\n"
if 'old_runs_removed' in locals() and old_runs_removed > 0:
summary += f"🧹 Cleaned up {old_runs_removed} old current run files\n"
summary += "\n"
# Add Google Drive links
summary += "πŸ”— Google Drive Links:\n"
if 'current_result' in locals() and current_result:
summary += f" πŸ“„ Current Run: {current_result['webViewLink']}\n"
if 'cumulative_result' in locals() and cumulative_result:
summary += f" πŸ“Š Total Database: {cumulative_result['webViewLink']}\n"
summary += f" πŸ“ Exports Folder: https://drive.google.com/drive/folders/1k5iP4egzLrGJwnHkMhxt9bAkaCiieojO\n"
summary += f" πŸ–ΌοΈ Images Folder: https://drive.google.com/drive/folders/1gd280IqcAzpAFTPeYsZjoBUOU9S7Zx3c\n\n"
if errors:
logger.warning(f"Encountered {len(errors)} errors during processing")
summary += "Errors encountered:\n" + "\n".join(errors)
for error in errors:
logger.warning(f"Processing error: {error}")
else:
logger.info("No errors encountered during processing")
# Display preview of current run
logger.debug("Creating preview DataFrame")
preview_df = current_df.head(10)
logger.debug(f"Preview contains {len(preview_df)} rows")
logger.info("Business card processing session completed successfully")
logger.info(f"Session summary - Cards: {len(all_data)}, Batches: {num_batches}, API calls: {num_batches}, Total DB size: {len(cumulative_df)}")
# Return the temporary file paths for download (Gradio will handle the download)
return current_temp_path, cumulative_temp_path, summary, preview_df
# Create Gradio interface
logger.info("Creating Gradio interface")
with gr.Blocks(title="Business Card Data Extractor") as demo:
gr.Markdown(
"""
# Business Card Data Extractor
Upload business card images to extract contact information and export to Excel.
Cards are processed in batches of 5 for efficiency (fewer API calls, lower cost).
**Two files are generated:**
- πŸ“ **Current Run**: Contains only the cards you just processed
- πŸ“Š **Total Database**: Contains ALL cards ever processed (cumulative)
**☁️ Google Drive Storage:**
- πŸ“‚ Excel files: Automatically uploaded to Google Drive exports folder
- πŸ–ΌοΈ Images: Uploaded to Google Drive images folder (if save option enabled)
- πŸ”— **Direct Links**: Access files directly through provided Google Drive links
- πŸ“ **Organized Folders**: Separate folders for exports and images
**πŸ“Œ File Access:**
- ⬇️ Download directly from interface buttons (temporary copies)
- πŸ”— Access permanent files via Google Drive links in results
- πŸ“ **Exports Folder**: https://drive.google.com/drive/folders/1k5iP4egzLrGJwnHkMhxt9bAkaCiieojO
- πŸ–ΌοΈ **Images Folder**: https://drive.google.com/drive/folders/1gd280IqcAzpAFTPeYsZjoBUOU9S7Zx3c
**βš™οΈ Google Drive Integration:**
- Requires `GOOGLE_CLIENT_ID` and `GOOGLE_CLIENT_SECRET` environment variables
- Files are automatically uploaded and organized in predefined folders
"""
)
with gr.Row():
with gr.Column():
# Define supported file types including phone formats
supported_types = [".jpg", ".jpeg", ".png", ".webp", ".bmp"]
if HEIF_SUPPORTED:
supported_types.extend([".heif", ".heic"])
image_input = gr.File(
label="Upload Business Cards",
file_count="multiple",
file_types=supported_types
)
model_selector = gr.Dropdown(
choices=[("Accuracy-Optimized model", "gemini-2.5-pro"), ("Speed-Optimized model", "gemini-2.5-flash")],
value="gemini-2.5-pro",
label="AI Model Selection"
)
save_images_checkbox = gr.Checkbox(
value=True,
label="Save Business Card Images"
)
process_btn = gr.Button("Process Business Cards", variant="primary")
with gr.Column():
current_file = gr.File(label="πŸ“ Download Current Run")
total_file = gr.File(label="πŸ“Š Download Total Database")
status_output = gr.Textbox(label="Processing Status", lines=5)
preview_output = gr.Dataframe(label="Data Preview (Current Run)")
# Wrapper function for better error handling and logging
def process_with_logging(images, model_name, save_images):
"""Wrapper function to add error handling and logging to the main process"""
try:
logger.info(f"Gradio interface initiated processing request")
logger.debug(f"Request parameters - Images: {len(images) if images else 0}, Model: {model_name}, Save Images: {save_images}")
return process_business_cards(images, model_name, save_images)
except Exception as e:
logger.error(f"Unexpected error in Gradio processing: {e}")
error_msg = f"An unexpected error occurred: {str(e)}\nPlease check the logs for more details."
return None, None, error_msg, None
# Handle processing
process_btn.click(
fn=process_with_logging,
inputs=[image_input, model_selector, save_images_checkbox],
outputs=[current_file, total_file, status_output, preview_output]
)
gr.Markdown(
"""
## Features:
- πŸ€– **Model Selection**: Choose between Speed-Optimized model (fast) or Accuracy-Optimized model (accurate)
- ⚑ **Batch Processing**: Processes 5 cards per API call for efficiency
- πŸ“„ **Data Extraction**: Names, emails, phone numbers, addresses, and more
- πŸ“ž **Smart Combination**: Multiple emails/phones combined with commas
- 🏠 **Address Merging**: All phone types and address fields combined
- ☁️ **Google Drive Storage**: Automatic upload to organized Drive folders
- πŸ”— **Direct Links**: Instant access to files via Google Drive URLs
- πŸ“Š **Dual Output**: Current run + cumulative database files
- πŸ“ **Full Tracking**: Processing date, filename, Google Drive links, and AI model used
- 🎯 **One Row Per Card**: Each business card becomes one spreadsheet row
"""
)
# Launch for Hugging Face Spaces deployment
logger.info("Starting Gradio demo")
# Get password from environment variable for authentication
hf_space_password = os.getenv("SPACE_PASSWORD")
if hf_space_password:
# Launch with password protection
logger.info("Launching with password protection enabled")
demo.launch(
auth=("user", hf_space_password),
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False # Disable SSR to avoid svelte-i18n errors
)
else:
# Launch without password protection
logger.warning("SPACE_PASSWORD not set - launching without password protection")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False # Disable SSR to avoid svelte-i18n errors
)