File size: 3,624 Bytes
a577b73
 
 
 
 
806f947
2eea8e7
 
a577b73
91fb569
 
9bc9fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806f947
a577b73
 
 
806f947
 
 
 
a577b73
4274c54
b39fc9a
a577b73
b39fc9a
2eea8e7
a577b73
 
806f947
efaebf1
2eea8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beebf2b
 
91fb569
9bc9fb6
4274c54
 
fb4f232
8150c29
4274c54
 
 
fb4f232
4274c54
 
a577b73
4274c54
 
 
 
a577b73
 
9bc9fb6
 
 
4274c54
 
9bc9fb6
 
a577b73
9bc9fb6
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import pyvista as pv
from dcgan import DCGAN3D_G
import torch
import requests
import time
import numpy as np
import streamlit.components.v1 as components

st.title("Generating Porous Media with GANs")

st.markdown(
    """
    ### Author
    _Lukas Mosser (2022)_ - :bird:[porestar](https://twitter.com/porestar)

    ## Description
    This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
    published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))

    The model is a pretrained 3D Deep Convolutional GAN ([Radford 2015](https://arxiv.org/abs/1511.06434)) that generates a volumetric image of a porous medium, here a Berea sandstone, from a set of pretrained weights.  
    
    ## The Demo
    Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
    
    The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
    Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
    """
, unsafe_allow_html=True)

url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/berea_generator_epoch_24.pth?raw=true"

# If repo is private - we need to add a token in header:
resp = requests.get(url)

with open('berea_generator_epoch_24.pth', 'wb') as f:
    f.write(resp.content)

pv.set_plot_theme("document")


netG = DCGAN3D_G(64, 512, 1, 32, 1)
netG.load_state_dict(torch.load("berea_generator_epoch_24.pth", map_location=torch.device('cpu')))
z = torch.randn(1, 512, 1, 1, 1)
with torch.no_grad():
    X = netG(z)

img = 1-(X[0, 0].numpy()+1)/2

a = 0.9

# create a uniform grid to sample the function with
x_min, y_min, z_min = 0, 0, 0
grid = pv.UniformGrid(
    dims=img.shape,
    spacing=(1, 1, 1),
    origin=(x_min, y_min, z_min),
)
x, y, z = grid.points.T

# sample and plot
values = img.flatten()
grid.point_data['my_array'] = values
slices = grid.slice_orthogonal()
mesh = grid.contour(1, values, method='marching_cubes', rng=[1, 0], preference="points")
dist = np.linalg.norm(mesh.points, axis=1)


pl = pv.Plotter(shape=(1, 1),
                     window_size=(400, 400))
_ = pl.add_mesh(slices, cmap="gray")
pl.export_html('slices.html')

pl = pv.Plotter(shape=(1, 1),
                     window_size=(400, 400))
_ = pl.add_mesh(mesh, scalars=dist)
pl.export_html('mesh.html')


view_width = 400
view_height = 400

HtmlFile = open("slices.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()

st.header("3D Intersections")
components.html(source_code, width=view_width, height=view_height)
st.markdown("_Click and drag to spin, right click to shift._")
HtmlFile = open("mesh.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()

st.header("3D Pore Space Mesh")
components.html(source_code, width=view_width, height=view_height)
st.markdown("_Click and drag to spin, right click to shift._")

st.markdown("""
    ## Citation
    If you use our code for your own research, we would be grateful if you cite our publication:
    ```
    @article{pmgan2017,
        title={Reconstruction of three-dimensional porous media using generative adversarial neural networks},
        author={Mosser, Lukas and Dubrule, Olivier and Blunt, Martin J.},
        journal={arXiv preprint arXiv:1704.03225},
        year={2017}
    }```
    """)