Spaces:
Runtime error
Runtime error
File size: 3,624 Bytes
a577b73 806f947 2eea8e7 a577b73 91fb569 9bc9fb6 806f947 a577b73 806f947 a577b73 4274c54 b39fc9a a577b73 b39fc9a 2eea8e7 a577b73 806f947 efaebf1 2eea8e7 beebf2b 91fb569 9bc9fb6 4274c54 fb4f232 8150c29 4274c54 fb4f232 4274c54 a577b73 4274c54 a577b73 9bc9fb6 4274c54 9bc9fb6 a577b73 9bc9fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import streamlit as st
import pyvista as pv
from dcgan import DCGAN3D_G
import torch
import requests
import time
import numpy as np
import streamlit.components.v1 as components
st.title("Generating Porous Media with GANs")
st.markdown(
"""
### Author
_Lukas Mosser (2022)_ - :bird:[porestar](https://twitter.com/porestar)
## Description
This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))
The model is a pretrained 3D Deep Convolutional GAN ([Radford 2015](https://arxiv.org/abs/1511.06434)) that generates a volumetric image of a porous medium, here a Berea sandstone, from a set of pretrained weights.
## The Demo
Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
"""
, unsafe_allow_html=True)
url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/berea_generator_epoch_24.pth?raw=true"
# If repo is private - we need to add a token in header:
resp = requests.get(url)
with open('berea_generator_epoch_24.pth', 'wb') as f:
f.write(resp.content)
pv.set_plot_theme("document")
netG = DCGAN3D_G(64, 512, 1, 32, 1)
netG.load_state_dict(torch.load("berea_generator_epoch_24.pth", map_location=torch.device('cpu')))
z = torch.randn(1, 512, 1, 1, 1)
with torch.no_grad():
X = netG(z)
img = 1-(X[0, 0].numpy()+1)/2
a = 0.9
# create a uniform grid to sample the function with
x_min, y_min, z_min = 0, 0, 0
grid = pv.UniformGrid(
dims=img.shape,
spacing=(1, 1, 1),
origin=(x_min, y_min, z_min),
)
x, y, z = grid.points.T
# sample and plot
values = img.flatten()
grid.point_data['my_array'] = values
slices = grid.slice_orthogonal()
mesh = grid.contour(1, values, method='marching_cubes', rng=[1, 0], preference="points")
dist = np.linalg.norm(mesh.points, axis=1)
pl = pv.Plotter(shape=(1, 1),
window_size=(400, 400))
_ = pl.add_mesh(slices, cmap="gray")
pl.export_html('slices.html')
pl = pv.Plotter(shape=(1, 1),
window_size=(400, 400))
_ = pl.add_mesh(mesh, scalars=dist)
pl.export_html('mesh.html')
view_width = 400
view_height = 400
HtmlFile = open("slices.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()
st.header("3D Intersections")
components.html(source_code, width=view_width, height=view_height)
st.markdown("_Click and drag to spin, right click to shift._")
HtmlFile = open("mesh.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()
st.header("3D Pore Space Mesh")
components.html(source_code, width=view_width, height=view_height)
st.markdown("_Click and drag to spin, right click to shift._")
st.markdown("""
## Citation
If you use our code for your own research, we would be grateful if you cite our publication:
```
@article{pmgan2017,
title={Reconstruction of three-dimensional porous media using generative adversarial neural networks},
author={Mosser, Lukas and Dubrule, Olivier and Blunt, Martin J.},
journal={arXiv preprint arXiv:1704.03225},
year={2017}
}```
""")
|