File size: 1,770 Bytes
a577b73
 
 
 
 
806f947
2eea8e7
 
a577b73
91fb569
 
806f947
a577b73
 
 
806f947
 
 
 
 
77e0f29
806f947
a577b73
91fb569
a577b73
b39fc9a
a577b73
b39fc9a
2eea8e7
a577b73
 
806f947
a577b73
2eea8e7
efaebf1
2eea8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beebf2b
 
91fb569
d10ade7
91fb569
 
beebf2b
a577b73
 
 
d10ade7
a577b73
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import streamlit as st
import pyvista as pv
from dcgan import DCGAN3D_G
import torch
import requests
import time
import numpy as np
import streamlit.components.v1 as components

st.title("Generating Porous Media with GANs")

url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/berea_generator_epoch_24.pth?raw=true"

# If repo is private - we need to add a token in header:
resp = requests.get(url)

with open('berea_generator_epoch_24.pth', 'wb') as f:
    f.write(resp.content)
    time.sleep(5)

st.text(resp.status_code)

pv.set_plot_theme("document")
pl = pv.Plotter(shape=(2, 1),
                     window_size=(800, 800))

netG = DCGAN3D_G(64, 512, 1, 32, 1)
netG.load_state_dict(torch.load("berea_generator_epoch_24.pth", map_location=torch.device('cpu')))
z = torch.randn(1, 512, 1, 1, 1)
with torch.no_grad():
    X = netG(z)

st.image((X[0, 0, 32].numpy()+1)/2, output_format="png")

img = 1-(X[0, 0].numpy()+1)/2

a = 0.9

# create a uniform grid to sample the function with
x_min, y_min, z_min = 0, 0, 0
grid = pv.UniformGrid(
    dims=img.shape,
    spacing=(1, 1, 1),
    origin=(x_min, y_min, z_min),
)
x, y, z = grid.points.T

# sample and plot
values = img.flatten()
grid.point_data['my_array'] = values
slices = grid.slice_orthogonal()
mesh = grid.contour(1, values, method='marching_cubes', rng=[1, 0], preference="points")
dist = np.linalg.norm(mesh.points, axis=1)

pl.subplot(0, 0)
pl.add_mesh(slices, cmap="gray")
pl.subplot(1, 0)
pl.add_mesh(mesh, scalars=dist)
pl.export_html('pyvista.html')

st.header("test html import")
view_width = 400
view_height = 800
HtmlFile = open("pyvista.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()

components.html(source_code, width=view_width, height=view_height)