|
|
|
from concrete.ml.deployment import FHEModelClient |
|
from pathlib import Path |
|
import numpy as np |
|
import gradio as gr |
|
import requests |
|
|
|
|
|
SERVER_URL = "http://127.0.0.1:7860/" |
|
CURRENT_DIR = Path(__file__).parent |
|
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_files" |
|
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys" |
|
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir" |
|
SERVER_DIR = DEPLOYMENT_DIR / "server_dir" |
|
|
|
|
|
USER_ID = "user_id" |
|
EXAMPLE_CLINICAL_TRIAL_LINK = "https://www.trials4us.co.uk/ongoing-clinical-trials/recruiting-healthy-adults-c23026?_gl=1*1ysp815*_up*MQ..&gclid=Cj0KCQjwr9m3BhDHARIsANut04bHqi5zE3sjS3f8JK2WRN3YEgY4bTfWbvTdZTxkUTSISxXX5ZWL7qEaAowwEALw_wcB&gbraid=0AAAAAD3Qci2k_3IERmM6U1FGDuYVayZWH" |
|
|
|
|
|
|
|
|
|
|
|
additional_categories = { |
|
"Gender": ["Male", "Female", "Other"], |
|
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"], |
|
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"], |
|
"Smoking_Status": ["Never", "Former", "Current"], |
|
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"], |
|
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"], |
|
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"], |
|
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"], |
|
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"], |
|
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"], |
|
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"], |
|
"Functional_Status": ["Independent", "Assisted", "Dependent"], |
|
"Previous_Trial_Participation": ["Yes", "No"] |
|
} |
|
|
|
|
|
age_input = gr.Slider(minimum=18, maximum=100, label="Age ", step=1) |
|
gender_input = gr.Radio(choices=additional_categories["Gender"], label="Gender") |
|
ethnicity_input = gr.Radio(choices=additional_categories["Ethnicity"], label="Ethnicity") |
|
geographic_location_input = gr.Radio(choices=additional_categories["Geographic_Location"], label="Geographic Location") |
|
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)") |
|
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications") |
|
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies") |
|
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments") |
|
blood_glucose_level_input = gr.Slider(minimum=0, maximum=300, label="Blood Glucose Level", step=1) |
|
blood_pressure_systolic_input = gr.Slider(minimum=80, maximum=200, label="Blood Pressure (Systolic)", step=1) |
|
blood_pressure_diastolic_input = gr.Slider(minimum=40, maximum=120, label="Blood Pressure (Diastolic)", step=1) |
|
bmi_input = gr.Slider(minimum=10, maximum=50, label="BMI ", step=1) |
|
smoking_status_input = gr.Radio(choices=additional_categories["Smoking_Status"], label="Smoking Status") |
|
alcohol_consumption_input = gr.Radio(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption") |
|
exercise_habits_input = gr.Radio(choices=additional_categories["Exercise_Habits"], label="Exercise Habits") |
|
diet_input = gr.Radio(choices=additional_categories["Diet"], label="Diet") |
|
condition_severity_input = gr.Slider(minimum=1, maximum=10, label="Condition Severity", step=1) |
|
functional_status_input = gr.Radio(choices=additional_categories["Functional_Status"], label="Functional Status") |
|
previous_trial_participation_input = gr.Radio(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation") |
|
|
|
|
|
def encrypt_array(user_symptoms: np.ndarray, user_id: str) -> bytes: |
|
""" |
|
Encrypt the user symptoms vector. |
|
|
|
Args: |
|
user_symptoms (np.ndarray): The vector of symptoms provided by the user. |
|
user_id (str): The current user's ID. |
|
|
|
Returns: |
|
bytes: Encrypted and serialized symptoms. |
|
""" |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
|
|
user_symptoms = np.array(user_symptoms).reshape(1, -1) |
|
|
|
|
|
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms) |
|
|
|
|
|
assert isinstance(encrypted_quantized_user_symptoms, bytes) |
|
|
|
|
|
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" |
|
with encrypted_input_path.open("wb") as f: |
|
f.write(encrypted_quantized_user_symptoms) |
|
|
|
|
|
return encrypted_quantized_user_symptoms |
|
|
|
|
|
def decrypt_result(encrypted_answer: bytes, user_id: str) -> bool: |
|
""" |
|
Decrypt the encrypted result. |
|
|
|
Args: |
|
encrypted_answer (bytes): The encrypted result. |
|
user_id (str): The current user's ID. |
|
|
|
Returns: |
|
bool: The decrypted result. |
|
""" |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
|
|
decrypted_result = client.decrypt_deserialize(encrypted_answer) |
|
|
|
|
|
return decrypted_result |
|
|
|
|
|
|
|
def encode_categorical_data(data): |
|
categories = ["Gender", "Ethnicity", "Geographic_Location", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"] |
|
encoded_data = [] |
|
for i in range(len(categories)): |
|
sub_cats = additional_categories[categories[i]] |
|
if data[i] in sub_cats: |
|
encoded_data.append(sub_cats.index(data[i]) + 1) |
|
else: |
|
encoded_data.append(0) |
|
|
|
return encoded_data |
|
|
|
|
|
def process_patient_data(age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, smoking_status, alcohol_consumption, exercise_habits, diet, condition_severity, functional_status, previous_trial_participation): |
|
|
|
|
|
categorical_data = [gender, ethnicity, geographic_location, smoking_status, alcohol_consumption, exercise_habits, diet, functional_status, previous_trial_participation] |
|
print(f"Categorical data: {categorical_data}") |
|
encoded_categorical_data = encode_categorical_data(categorical_data) |
|
numerical_data = np.array([age, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, condition_severity]) |
|
print(f"Numerical data: {numerical_data}") |
|
print(f"One-hot encoded data: {encoded_categorical_data}") |
|
combined_data = np.hstack((numerical_data, encoded_categorical_data)) |
|
print(f"Combined data: {combined_data}") |
|
encrypted_array = encrypt_array(combined_data, "user_id") |
|
|
|
|
|
response = requests.post(SERVER_URL, data=encrypted_array) |
|
|
|
|
|
if response.status_code == 200: |
|
print("Data sent successfully.") |
|
else: |
|
print("Error sending data.") |
|
|
|
|
|
decrypted_result = decrypt_result(response.content, USER_ID) |
|
|
|
|
|
if decrypted_result: |
|
return ( |
|
f"Encrypted data: {encrypted_array}", |
|
f"Decrypted result: {decrypted_result}", |
|
f"You may now access the link to the [clinical trial]({EXAMPLE_CLINICAL_TRIAL_LINK})" |
|
) |
|
else: |
|
return ( |
|
f"Encrypted data: {encrypted_array}", |
|
f"Decrypted result: {decrypted_result}", |
|
f"Unfortunately, there are no clinical trials available for the provided criteria." |
|
) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=process_patient_data, |
|
inputs=[ |
|
age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, medications_input, allergies_input, previous_treatments_input, blood_glucose_level_input, blood_pressure_systolic_input, blood_pressure_diastolic_input, bmi_input, smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, condition_severity_input, functional_status_input, previous_trial_participation_input |
|
], |
|
outputs="text", |
|
title="Patient Data Criteria Form", |
|
description="Please fill in the criteria for the type of patients you are looking for." |
|
) |
|
|
|
|
|
demo.launch() |