ZamaKlinik / app.py
lukalafaye's picture
fix
e904228
raw
history blame
3.91 kB
import streamlit as st
from llama_cpp_cuda_tensorcores import Llama
from huggingface_hub import hf_hub_download
import spaces
# Constants
REPO_ID = "MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF"
MODEL_NAME = "Meta-Llama-3-70B-Instruct.Q3_K_L.gguf"
MAX_CONTEXT_LENGTH = 8192
CUDA = True
SYSTEM_PROMPT = "You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability."
TOKEN_STOP = ["<|eot_id|>"]
SYS_MSG = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nSYSTEM_PROMPT<|eot_id|>\n"
USER_PROMPT = (
"<|start_header_id|>user<|end_header_id|>\n\nUSER_PROMPT<|eot_id|>\n"
)
ASSIS_PROMPT = "<|start_header_id|>assistant<|end_header_id|>\n\n"
END_ASSIS_PREVIOUS_RESPONSE = "<|eot_id|>\n"
TASK_PROMPT = {
"Assistant": SYSTEM_PROMPT,
}
# ChatLLM class for handling the chat
class ChatLLM:
def __init__(self, config_model):
self.llm = None
self.config_model = config_model
def load_cpp_model(self):
self.llm = Llama(**self.config_model)
def apply_chat_template(self, history, system_message):
history = history or []
messages = SYS_MSG.replace("SYSTEM_PROMPT", system_message.strip())
for msg in history:
messages += (
USER_PROMPT.replace("USER_PROMPT", msg[0]) + ASSIS_PROMPT + msg[1]
)
messages += END_ASSIS_PREVIOUS_RESPONSE if msg[1] else ""
return messages
@spaces.GPU(duration=120)
def response(
self,
history,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
messages = self.apply_chat_template(history, system_message)
history[-1][1] = ""
if not self.llm:
print("Loading model")
self.load_cpp_model()
for output in self.llm(
messages,
echo=False,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
stop=TOKEN_STOP,
):
answer = output["choices"][0]["text"]
history[-1][1] += answer
return history
# Download model from Hugging Face
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME)
# Model configuration
config_model = {
"model_path": model_path,
"n_ctx": MAX_CONTEXT_LENGTH,
"n_gpu_layers": -1 if CUDA else 0,
}
# Instantiate the chat model
llm_chat = ChatLLM(config_model)
# Streamlit UI
st.title("AI Chat Assistant")
# Initialize session state to store the chat history
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "input_text" not in st.session_state:
st.session_state.input_text = ""
# Define response area
def chat_response():
if st.session_state.input_text.strip():
# User message
history = st.session_state.chat_history
history.append([st.session_state.input_text, ""])
# Model response
history = llm_chat.response(
history=history,
system_message=SYSTEM_PROMPT,
max_tokens=100, # Adjust token length as needed
temperature=0.7,
top_p=0.9,
top_k=50,
repeat_penalty=1.0,
)
st.session_state.chat_history = history
st.session_state.input_text = ""
# Textbox for user input
st.text_input("You: ", key="input_text", on_change=chat_response)
# Display chat history
if st.session_state.chat_history:
for user_msg, bot_resp in st.session_state.chat_history:
st.markdown(f"**You:** {user_msg}")
st.markdown(f"**Assistant:** {bot_resp}")
# Clear chat button
def clear_chat():
st.session_state.chat_history = []
st.button("Clear History", on_click=clear_chat)