Spaces:
Sleeping
Sleeping
Delete app/main.py
Browse files- app/main.py +0 -180
app/main.py
DELETED
@@ -1,180 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from gradio_client import Client
|
3 |
-
from langgraph.graph import StateGraph, START, END
|
4 |
-
from typing import TypedDict, Optional
|
5 |
-
import io
|
6 |
-
from PIL import Image
|
7 |
-
import os
|
8 |
-
|
9 |
-
#OPEN QUESTION: SHOULD WE PASS ALL PARAMS FROM THE ORCHESTRATOR TO THE NODES INSTEAD OF SETTING IN EACH MODULE?
|
10 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
-
# Define the state schema
|
12 |
-
class GraphState(TypedDict):
|
13 |
-
query: str
|
14 |
-
context: str
|
15 |
-
result: str
|
16 |
-
# Add orchestrator-level parameters (addressing your open question)
|
17 |
-
reports_filter: str
|
18 |
-
sources_filter: str
|
19 |
-
subtype_filter: str
|
20 |
-
year_filter: str
|
21 |
-
|
22 |
-
# node 2: retriever
|
23 |
-
def retrieve_node(state: GraphState) -> GraphState:
|
24 |
-
client = Client("giz/chatfed_retriever", hf_token=HF_TOKEN) # HF repo name
|
25 |
-
context = client.predict(
|
26 |
-
query=state["query"],
|
27 |
-
reports_filter=state.get("reports_filter", ""),
|
28 |
-
sources_filter=state.get("sources_filter", ""),
|
29 |
-
subtype_filter=state.get("subtype_filter", ""),
|
30 |
-
year_filter=state.get("year_filter", ""),
|
31 |
-
api_name="/retrieve"
|
32 |
-
)
|
33 |
-
return {"context": context}
|
34 |
-
|
35 |
-
# node 3: generator
|
36 |
-
def generate_node(state: GraphState) -> GraphState:
|
37 |
-
client = Client("giz/chatfed_generator", hf_token=HF_TOKEN)
|
38 |
-
result = client.predict(
|
39 |
-
query=state["query"],
|
40 |
-
context=state["context"],
|
41 |
-
api_name="/generate"
|
42 |
-
)
|
43 |
-
return {"result": result}
|
44 |
-
|
45 |
-
# build the graph
|
46 |
-
workflow = StateGraph(GraphState)
|
47 |
-
|
48 |
-
# Add nodes
|
49 |
-
workflow.add_node("retrieve", retrieve_node)
|
50 |
-
workflow.add_node("generate", generate_node)
|
51 |
-
|
52 |
-
# Add edges
|
53 |
-
workflow.add_edge(START, "retrieve")
|
54 |
-
workflow.add_edge("retrieve", "generate")
|
55 |
-
workflow.add_edge("generate", END)
|
56 |
-
|
57 |
-
# Compile the graph
|
58 |
-
graph = workflow.compile()
|
59 |
-
|
60 |
-
# Single tool for processing queries
|
61 |
-
def process_query(
|
62 |
-
query: str,
|
63 |
-
reports_filter: str = "",
|
64 |
-
sources_filter: str = "",
|
65 |
-
subtype_filter: str = "",
|
66 |
-
year_filter: str = ""
|
67 |
-
) -> str:
|
68 |
-
"""
|
69 |
-
Execute the ChatFed orchestration pipeline to process a user query.
|
70 |
-
|
71 |
-
This function orchestrates a two-step workflow:
|
72 |
-
1. Retrieve relevant context using the ChatFed retriever service with optional filters
|
73 |
-
2. Generate a response using the ChatFed generator service with the retrieved context
|
74 |
-
|
75 |
-
Args:
|
76 |
-
query (str): The user's input query/question to be processed
|
77 |
-
reports_filter (str, optional): Filter for specific report types. Defaults to "".
|
78 |
-
sources_filter (str, optional): Filter for specific data sources. Defaults to "".
|
79 |
-
subtype_filter (str, optional): Filter for document subtypes. Defaults to "".
|
80 |
-
year_filter (str, optional): Filter for specific years. Defaults to "".
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
str: The generated response from the ChatFed generator service
|
84 |
-
"""
|
85 |
-
initial_state = {
|
86 |
-
"query": query,
|
87 |
-
"context": "",
|
88 |
-
"result": "",
|
89 |
-
"reports_filter": reports_filter or "",
|
90 |
-
"sources_filter": sources_filter or "",
|
91 |
-
"subtype_filter": subtype_filter or "",
|
92 |
-
"year_filter": year_filter or ""
|
93 |
-
}
|
94 |
-
final_state = graph.invoke(initial_state)
|
95 |
-
return final_state["result"]
|
96 |
-
|
97 |
-
# Simple testing interface
|
98 |
-
ui = gr.Interface(
|
99 |
-
fn=process_query,
|
100 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter query here"),
|
101 |
-
outputs="text",
|
102 |
-
flagging_mode="never"
|
103 |
-
)
|
104 |
-
|
105 |
-
# Add a function to generate the graph visualization
|
106 |
-
def get_graph_visualization():
|
107 |
-
"""Generate and return the LangGraph workflow visualization as a PIL Image."""
|
108 |
-
# Generate the graph as PNG bytes
|
109 |
-
graph_png_bytes = graph.get_graph().draw_mermaid_png()
|
110 |
-
|
111 |
-
# Convert bytes to PIL Image for Gradio display
|
112 |
-
graph_image = Image.open(io.BytesIO(graph_png_bytes))
|
113 |
-
return graph_image
|
114 |
-
|
115 |
-
|
116 |
-
# Guidance for ChatUI - can be removed later. Questionable whether front end even necessary. Maybe nice to show the graph.
|
117 |
-
with gr.Blocks(title="ChatFed Orchestrator") as demo:
|
118 |
-
gr.Markdown("# ChatFed Orchestrator")
|
119 |
-
gr.Markdown("This LangGraph server exposes MCP endpoints for the ChatUI module to call (which triggers the graph).")
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
# Left column - Graph visualization
|
123 |
-
with gr.Column(scale=1):
|
124 |
-
gr.Markdown("**Workflow Visualization**")
|
125 |
-
graph_display = gr.Image(
|
126 |
-
value=get_graph_visualization(),
|
127 |
-
label="LangGraph Workflow",
|
128 |
-
interactive=False,
|
129 |
-
height=300
|
130 |
-
)
|
131 |
-
|
132 |
-
# Add a refresh button for the graph
|
133 |
-
refresh_graph_btn = gr.Button("🔄 Refresh Graph", size="sm")
|
134 |
-
refresh_graph_btn.click(
|
135 |
-
fn=get_graph_visualization,
|
136 |
-
outputs=graph_display
|
137 |
-
)
|
138 |
-
|
139 |
-
# Right column - Interface and documentation
|
140 |
-
with gr.Column(scale=2):
|
141 |
-
gr.Markdown("**Available MCP Tools:**")
|
142 |
-
|
143 |
-
with gr.Accordion("MCP Endpoint Information", open=True):
|
144 |
-
gr.Markdown(f"""
|
145 |
-
**MCP Server Endpoint:** https://giz-chatfed-orchestrator.hf.space/gradio_api/mcp/sse
|
146 |
-
|
147 |
-
**For ChatUI Integration:**
|
148 |
-
```python
|
149 |
-
from gradio_client import Client
|
150 |
-
|
151 |
-
# Connect to orchestrator
|
152 |
-
orchestrator_client = Client("https://giz-chatfed-orchestrator.hf.space")
|
153 |
-
|
154 |
-
# Basic usage (no filters)
|
155 |
-
response = orchestrator_client.predict(
|
156 |
-
query="query",
|
157 |
-
api_name="/process_query"
|
158 |
-
)
|
159 |
-
|
160 |
-
# Advanced usage with any combination of filters
|
161 |
-
response = orchestrator_client.predict(
|
162 |
-
query="query",
|
163 |
-
reports_filter="annual_reports",
|
164 |
-
sources_filter="internal",
|
165 |
-
year_filter="2024",
|
166 |
-
api_name="/process_query"
|
167 |
-
)
|
168 |
-
```
|
169 |
-
""")
|
170 |
-
|
171 |
-
with gr.Accordion("Quick Testing Interface", open=True):
|
172 |
-
ui.render()
|
173 |
-
|
174 |
-
if __name__ == "__main__":
|
175 |
-
demo.launch(
|
176 |
-
server_name="0.0.0.0",
|
177 |
-
server_port=7860,
|
178 |
-
mcp_server=True,
|
179 |
-
show_error=True
|
180 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|