File size: 4,072 Bytes
7c5ef3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ec6ed
 
 
 
7c5ef3c
 
90ec6ed
 
7c5ef3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ec6ed
 
 
7c5ef3c
 
 
 
 
 
 
 
 
0aeb023
7c5ef3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aeb023
 
7c5ef3c
 
 
0aeb023
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import os

# Suppress symlink warnings
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = "1"

# Define styles
styles = {
    "glitch": {
        "concept_url": "sd-concepts-library/001glitch-core",
        "seed": 42,
        "token": "<glitch-core>"
    },
    "roth": {
        "concept_url": "sd-concepts-library/2814-roth",
        "seed": 123,
        "token": "<2814-roth>"
    },
    "night": {
        "concept_url": "sd-concepts-library/4tnght",
        "seed": 456,
        "token": "<4tnght>"
    },
    "anime80s": {
        "concept_url": "sd-concepts-library/80s-anime-ai",
        "seed": 789,
        "token": "<80s-anime>"
    },
    "animeai": {
        "concept_url": "sd-concepts-library/80s-anime-ai-being",
        "seed": 1024,
        "token": "<80s-anime-being>"
    }
}

def load_pipeline():
    """Load and prepare the pipeline with all style embeddings"""
    # Check if CUDA is available
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16 if device == "cuda" else torch.float32

    pipe = StableDiffusionPipeline.from_pretrained(
        "CompVis/stable-diffusion-v1-4",
        torch_dtype=dtype
    ).to(device)
    
    # Load all embeddings
    for style_info in styles.values():
        embedding_path = hf_hub_download(
            repo_id=style_info["concept_url"],
            filename="learned_embeds.bin",
            repo_type="model"
        )
        pipe.load_textual_inversion(embedding_path)
    
    return pipe

def apply_purple_guidance(image, strength=0.5):
    """Apply purple guidance to an image"""
    img_array = np.array(image).astype(float)
    purple_mask = (img_array[:,:,0] > 100) & (img_array[:,:,2] > 100)
    img_array[purple_mask] = img_array[purple_mask] * (1 - strength) + np.array([128, 0, 128]) * strength
    return Image.fromarray(np.uint8(img_array.clip(0, 255)))

def generate_image(prompt, style, seed, apply_guidance, guidance_strength=0.5):
    """Generate an image with selected style and optional purple guidance"""
    if style not in styles:
        return None
    
    # Get style info
    style_info = styles[style]
    
    # Prepare generator with appropriate device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    generator = torch.Generator(device).manual_seed(int(seed))
    
    # Create styled prompt
    styled_prompt = f"{prompt} {style_info['token']}"
    
    # Generate image
    image = pipe(
        styled_prompt,
        generator=generator,
        guidance_scale=7.5,
        num_inference_steps=20
    ).images[0]
    
    # Apply purple guidance if requested
    if apply_guidance:
        image = apply_purple_guidance(image, guidance_strength)
    
    return image

# Initialize the pipeline globally
print("Loading pipeline and embeddings...")
pipe = load_pipeline()

# Create the Gradio interface
demo = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Prompt", value="A serene mountain landscape with a lake at sunset"),
        gr.Radio(choices=list(styles.keys()), label="Style", value="glitch"),
        gr.Number(label="Seed", value=42),
        gr.Checkbox(label="Apply Purple Guidance", value=False),
        gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Purple Guidance Strength")
    ],
    outputs=gr.Image(label="Generated Image"),
    title="Style-Guided Image Generation with Purple Enhancement",
    description="""Generate images in different styles with optional purple color guidance.
    Choose a style, enter a prompt, and optionally apply purple color enhancement.""",
    examples=[
        ["A serene mountain landscape with a lake at sunset", "glitch", 42, True, 0.5],
        ["A magical forest at twilight", "anime80s", 789, True, 0.7],
        ["A cyberpunk city at night", "night", 456, False, 0.5],
    ],
    cache_examples=True
)

if __name__ == "__main__":
    demo.launch(share=False)