Spaces:
Runtime error
Runtime error
File size: 1,846 Bytes
ef7a9a3 f9270e9 ef7a9a3 90ec6ed ef7a9a3 7c5ef3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
title: Style-Guided Purple Image Generator
emoji: 🎨
colorFrom: purple
colorTo: indigo
sdk: gradio
sdk_version: "4.44.0"
app_file: app.py
pinned: false
hardware: true
resources:
cpu: 1
memory: "16Gi"
gpu: 1
---
# Style-Guided Image Generation with Purple Enhancement
This Space demonstrates the use of various textual inversion style embeddings with Stable Diffusion, combined with a custom purple color enhancement technique.
## Features
- **Multiple Style Options**: Choose from 5 different artistic styles:
- Glitch Core (`001glitch-core`)
- Roth Style (`2814-roth`)
- Night Style (`4tnght`)
- 80s Anime (`80s-anime-ai`)
- Anime AI Being (`80s-anime-ai-being`)
- **Purple Guidance**: Optional color enhancement that adds purple tones to the generated images
- **Customizable Parameters**:
- Adjustable seed for reproducibility
- Control over purple guidance strength
- Custom prompt input
## How to Use
1. Enter your prompt in the text box
2. Select a style from the radio buttons
3. (Optional) Adjust the seed number for different variations
4. (Optional) Enable purple guidance and adjust its strength
5. Click "Submit" to generate the image
## Examples
The app includes several example combinations that you can try:
- Mountain landscape with glitch effect
- Magical forest in 80s anime style
- Cyberpunk city with night style
## Technical Details
This application uses:
- Stable Diffusion v1.4 as the base model
- Textual Inversion embeddings from the Hugging Face Hub
- Custom purple color guidance implementation
- Gradio for the user interface
## Credits
Style embeddings are from the [SD Concepts Library](https://huggingface.co/sd-concepts-library) on Hugging Face.
## License
This project is released under the MIT License. The used models and embeddings maintain their original licenses.
|