File size: 7,120 Bytes
7c5ef3c
 
 
 
 
 
 
be16ca0
7c5ef3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be16ca0
 
 
 
 
 
 
7c5ef3c
 
90ec6ed
 
 
 
be16ca0
 
 
7c5ef3c
be16ca0
 
 
90ec6ed
7c5ef3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be16ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5ef3c
 
 
 
 
 
90ec6ed
 
 
7c5ef3c
 
 
 
be16ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5ef3c
 
 
 
 
be16ca0
 
 
 
 
7c5ef3c
 
be16ca0
 
 
7c5ef3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be16ca0
 
7c5ef3c
 
 
 
0aeb023
be16ca0
 
7c5ef3c
 
 
be16ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import os
import gc

# Suppress symlink warnings
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = "1"

# Define styles
styles = {
    "glitch": {
        "concept_url": "sd-concepts-library/001glitch-core",
        "seed": 42,
        "token": "<glitch-core>"
    },
    "roth": {
        "concept_url": "sd-concepts-library/2814-roth",
        "seed": 123,
        "token": "<2814-roth>"
    },
    "night": {
        "concept_url": "sd-concepts-library/4tnght",
        "seed": 456,
        "token": "<4tnght>"
    },
    "anime80s": {
        "concept_url": "sd-concepts-library/80s-anime-ai",
        "seed": 789,
        "token": "<80s-anime>"
    },
    "animeai": {
        "concept_url": "sd-concepts-library/80s-anime-ai-being",
        "seed": 1024,
        "token": "<80s-anime-being>"
    }
}

# Pre-generate example images
example_images = {
    "glitch": "examples/glitch_example.jpg",
    "anime80s": "examples/anime80s_example.jpg",
    "night": "examples/night_example.jpg"
}

def load_pipeline():
    """Load and prepare the pipeline with all style embeddings"""
    # Check if CUDA is available
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16 if device == "cuda" else torch.float32

    # Use smaller model for CPU
    model_id = "runwayml/stable-diffusion-v1-5" if device == "cuda" else "CompVis/stable-diffusion-v1-4"
    
    pipe = StableDiffusionPipeline.from_pretrained(
        model_id,
        torch_dtype=dtype,
        low_cpu_mem_usage=True
    ).to(device)
    
    # Load all embeddings
    for style_info in styles.values():
        embedding_path = hf_hub_download(
            repo_id=style_info["concept_url"],
            filename="learned_embeds.bin",
            repo_type="model"
        )
        pipe.load_textual_inversion(embedding_path)
    
    return pipe

def apply_purple_guidance(image, strength=0.5):
    """Apply purple guidance to an image"""
    img_array = np.array(image).astype(float)
    purple_mask = (img_array[:,:,0] > 100) & (img_array[:,:,2] > 100)
    img_array[purple_mask] = img_array[purple_mask] * (1 - strength) + np.array([128, 0, 128]) * strength
    return Image.fromarray(np.uint8(img_array.clip(0, 255)))

def generate_image(prompt, style, seed, apply_guidance, guidance_strength=0.5):
    """Generate an image with selected style and optional purple guidance"""
    # Check if this is one of our examples with pre-generated images
    if prompt == "A serene mountain landscape with a lake at sunset" and style == "glitch" and seed == 42:
        if os.path.exists(example_images["glitch"]):
            image = Image.open(example_images["glitch"])
            if apply_guidance:
                image = apply_purple_guidance(image, guidance_strength)
            return image
    
    if prompt == "A magical forest at twilight" and style == "anime80s" and seed == 789:
        if os.path.exists(example_images["anime80s"]):
            image = Image.open(example_images["anime80s"])
            if apply_guidance:
                image = apply_purple_guidance(image, guidance_strength)
            return image
    
    if prompt == "A cyberpunk city at night" and style == "night" and seed == 456:
        if os.path.exists(example_images["night"]):
            image = Image.open(example_images["night"])
            if apply_guidance:
                image = apply_purple_guidance(image, guidance_strength)
            return image
    
    if style not in styles:
        return None
    
    # Get style info
    style_info = styles[style]
    
    # Prepare generator with appropriate device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    generator = torch.Generator(device).manual_seed(int(seed))
    
    # Create styled prompt
    styled_prompt = f"{prompt} {style_info['token']}"
    
    # Generate image with reduced settings for CPU
    if device == "cpu":
        # Use much smaller image size and fewer steps on CPU
        image = pipe(
            styled_prompt,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=10,  # Reduced steps
            height=256,  # Smaller height
            width=256    # Smaller width
        ).images[0]
    else:
        image = pipe(
            styled_prompt,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=20
        ).images[0]
    
    # Apply purple guidance if requested
    if apply_guidance:
        image = apply_purple_guidance(image, guidance_strength)
    
    # Clean up memory
    gc.collect()
    if device == "cuda":
        torch.cuda.empty_cache()
    
    return image

# Create examples directory
os.makedirs("examples", exist_ok=True)

# Initialize the pipeline globally
print("Loading pipeline and embeddings...")
pipe = load_pipeline()

# Create the Gradio interface
demo = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Prompt", value="A serene mountain landscape with a lake at sunset"),
        gr.Radio(choices=list(styles.keys()), label="Style", value="glitch"),
        gr.Number(label="Seed", value=42),
        gr.Checkbox(label="Apply Purple Guidance", value=False),
        gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Purple Guidance Strength")
    ],
    outputs=gr.Image(label="Generated Image"),
    title="Style-Guided Image Generation with Purple Enhancement",
    description="""Generate images in different styles with optional purple color guidance.
    Choose a style, enter a prompt, and optionally apply purple color enhancement.
    Note: Generation may take a few minutes on CPU.""",
    examples=[
        ["A serene mountain landscape with a lake at sunset", "glitch", 42, True, 0.5],
        ["A magical forest at twilight", "anime80s", 789, True, 0.7],
        ["A cyberpunk city at night", "night", 456, False, 0.5],
    ],
    cache_examples=True,
    allow_flagging="never"  # Disable flagging to reduce overhead
)

if __name__ == "__main__":
    # Generate and save example images if they don't exist
    if not all(os.path.exists(path) for path in example_images.values()):
        print("Pre-generating example images...")
        # Example 1
        if not os.path.exists(example_images["glitch"]):
            img = generate_image("A serene mountain landscape with a lake at sunset", "glitch", 42, False, 0.5)
            img.save(example_images["glitch"])
        
        # Example 2
        if not os.path.exists(example_images["anime80s"]):
            img = generate_image("A magical forest at twilight", "anime80s", 789, False, 0.7)
            img.save(example_images["anime80s"])
        
        # Example 3
        if not os.path.exists(example_images["night"]):
            img = generate_image("A cyberpunk city at night", "night", 456, False, 0.5)
            img.save(example_images["night"])
    
    # Launch the app
    demo.launch(share=False, show_error=True)