File size: 13,289 Bytes
9b56ad1
1dedfac
 
6705397
1dedfac
 
 
 
 
 
 
6705397
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6705397
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6705397
1dedfac
 
6705397
1dedfac
ea914de
1dedfac
9b56ad1
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea914de
1dedfac
 
 
9b56ad1
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b56ad1
1dedfac
6705397
1dedfac
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import PyPDF2
import docx
import io
import os
from typing import List, Optional

class DocumentRAG:
    def __init__(self):
        print("πŸš€ Initializing RAG System...")
        
        # Initialize embedding model (lightweight)
        self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
        print("βœ… Embedding model loaded")
        
        # Initialize quantized LLM
        self.setup_llm()
        
        # Document storage
        self.documents = []
        self.index = None
        self.is_indexed = False
        
    def setup_llm(self):
        """Setup quantized Mistral model"""
        try:
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4"
            )
            
            model_name = "mistralai/Mistral-7B-Instruct-v0.1"
            
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                quantization_config=quantization_config,
                device_map="auto",
                torch_dtype=torch.float16,
                trust_remote_code=True
            )
            print("βœ… Quantized Mistral model loaded")
            
        except Exception as e:
            print(f"❌ Error loading model: {e}")
            # Fallback to a smaller model if Mistral fails
            self.setup_fallback_model()
    
    def setup_fallback_model(self):
        """Fallback to smaller model if Mistral fails"""
        try:
            model_name = "microsoft/DialoGPT-small"
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.model = AutoModelForCausalLM.from_pretrained(model_name)
            print("βœ… Fallback model loaded")
        except Exception as e:
            print(f"❌ Fallback model failed: {e}")
            self.model = None
            self.tokenizer = None

    def extract_text_from_file(self, file_path: str) -> str:
        """Extract text from various file formats"""
        try:
            file_extension = os.path.splitext(file_path)[1].lower()
            
            if file_extension == '.pdf':
                return self.extract_from_pdf(file_path)
            elif file_extension == '.docx':
                return self.extract_from_docx(file_path)
            elif file_extension == '.txt':
                return self.extract_from_txt(file_path)
            else:
                return f"Unsupported file format: {file_extension}"
                
        except Exception as e:
            return f"Error reading file: {str(e)}"
    
    def extract_from_pdf(self, file_path: str) -> str:
        """Extract text from PDF"""
        text = ""
        try:
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                for page in pdf_reader.pages:
                    text += page.extract_text() + "\n"
        except Exception as e:
            text = f"Error reading PDF: {str(e)}"
        return text
    
    def extract_from_docx(self, file_path: str) -> str:
        """Extract text from DOCX"""
        try:
            doc = docx.Document(file_path)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        except Exception as e:
            return f"Error reading DOCX: {str(e)}"
    
    def extract_from_txt(self, file_path: str) -> str:
        """Extract text from TXT"""
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
        except Exception as e:
            try:
                with open(file_path, 'r', encoding='latin-1') as file:
                    return file.read()
            except Exception as e2:
                return f"Error reading TXT: {str(e2)}"
    
    def chunk_text(self, text: str, chunk_size: int = 500, overlap: int = 50) -> List[str]:
        """Split text into overlapping chunks"""
        if not text.strip():
            return []
        
        words = text.split()
        chunks = []
        
        for i in range(0, len(words), chunk_size - overlap):
            chunk = ' '.join(words[i:i + chunk_size])
            if chunk.strip():
                chunks.append(chunk.strip())
            
            if i + chunk_size >= len(words):
                break
                
        return chunks
    
    def process_documents(self, files) -> str:
        """Process uploaded files and create embeddings"""
        if not files:
            return "❌ No files uploaded!"
        
        try:
            all_text = ""
            processed_files = []
            
            # Extract text from all files
            for file in files:
                if file is None:
                    continue
                    
                file_text = self.extract_text_from_file(file.name)
                if not file_text.startswith("Error") and not file_text.startswith("Unsupported"):
                    all_text += f"\n\n--- {os.path.basename(file.name)} ---\n\n{file_text}"
                    processed_files.append(os.path.basename(file.name))
                else:
                    return f"❌ {file_text}"
            
            if not all_text.strip():
                return "❌ No text extracted from files!"
            
            # Chunk the text
            self.documents = self.chunk_text(all_text)
            
            if not self.documents:
                return "❌ No valid text chunks created!"
            
            # Create embeddings
            print(f"πŸ“„ Creating embeddings for {len(self.documents)} chunks...")
            embeddings = self.embedder.encode(self.documents, show_progress_bar=True)
            
            # Build FAISS index
            dimension = embeddings.shape[1]
            self.index = faiss.IndexFlatIP(dimension)
            
            # Normalize embeddings for cosine similarity
            faiss.normalize_L2(embeddings)
            self.index.add(embeddings.astype('float32'))
            
            self.is_indexed = True
            
            return f"βœ… Successfully processed {len(processed_files)} files:\n" + \
                   f"πŸ“„ Files: {', '.join(processed_files)}\n" + \
                   f"πŸ“Š Created {len(self.documents)} text chunks\n" + \
                   f"πŸ” Ready for Q&A!"
            
        except Exception as e:
            return f"❌ Error processing documents: {str(e)}"
    
    def retrieve_context(self, query: str, k: int = 3) -> str:
        """Retrieve relevant context for the query"""
        if not self.is_indexed:
            return ""
        
        try:
            # Get query embedding
            query_embedding = self.embedder.encode([query])
            faiss.normalize_L2(query_embedding)
            
            # Search for similar chunks
            scores, indices = self.index.search(query_embedding.astype('float32'), k)
            
            # Get relevant documents
            relevant_docs = []
            for i, idx in enumerate(indices[0]):
                if idx < len(self.documents) and scores[0][i] > 0.1:  # Similarity threshold
                    relevant_docs.append(self.documents[idx])
            
            return "\n\n".join(relevant_docs)
            
        except Exception as e:
            print(f"Error in retrieval: {e}")
            return ""
    
    def generate_answer(self, query: str, context: str) -> str:
        """Generate answer using the LLM"""
        if self.model is None or self.tokenizer is None:
            return "❌ Model not available. Please try again."
        
        try:
            # Create prompt
            prompt = f"""<s>[INST] Based on the following context, answer the question. If the answer is not in the context, say "I don't have enough information to answer this question."

Context:
{context[:2000]}  # Limit context length

Question: {query}

Answer: [/INST]"""

            # Tokenize
            inputs = self.tokenizer(
                prompt, 
                return_tensors="pt", 
                max_length=1024, 
                truncation=True,
                padding=True
            )
            
            # Generate
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=256,
                    temperature=0.7,
                    do_sample=True,
                    top_p=0.9,
                    pad_token_id=self.tokenizer.eos_token_id,
                    eos_token_id=self.tokenizer.eos_token_id
                )
            
            # Decode response
            full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Extract answer (remove the prompt part)
            if "[/INST]" in full_response:
                answer = full_response.split("[/INST]")[-1].strip()
            else:
                answer = full_response[len(prompt):].strip()
            
            return answer if answer else "I couldn't generate a proper response."
            
        except Exception as e:
            return f"❌ Error generating answer: {str(e)}"
    
    def answer_question(self, query: str) -> str:
        """Main function to answer questions"""
        if not query.strip():
            return "❓ Please ask a question!"
        
        if not self.is_indexed:
            return "πŸ“ Please upload and process documents first!"
        
        try:
            # Retrieve relevant context
            context = self.retrieve_context(query)
            
            if not context:
                return "πŸ” No relevant information found in the uploaded documents."
            
            # Generate answer
            answer = self.generate_answer(query, context)
            
            return f"πŸ’‘ **Answer:** {answer}\n\nπŸ“„ **Source Context:** {context[:500]}..."
            
        except Exception as e:
            return f"❌ Error answering question: {str(e)}"

# Initialize the RAG system
print("Initializing Document RAG System...")
rag_system = DocumentRAG()

# Gradio Interface
def create_interface():
    with gr.Blocks(title="πŸ“š Document Q&A with RAG", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸ“š Document Q&A System
        
        Upload your documents and ask questions about them!
        
        **Supported formats:** PDF, DOCX, TXT
        """)
        
        with gr.Tab("πŸ“€ Upload Documents"):
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(
                        label="Upload Documents",
                        file_count="multiple",
                        file_types=[".pdf", ".docx", ".txt"]
                    )
                    process_btn = gr.Button("πŸ”„ Process Documents", variant="primary")
                
                with gr.Column():
                    process_status = gr.Textbox(
                        label="Processing Status",
                        lines=8,
                        interactive=False
                    )
            
            process_btn.click(
                fn=rag_system.process_documents,
                inputs=[file_upload],
                outputs=[process_status]
            )
        
        with gr.Tab("❓ Ask Questions"):
            with gr.Row():
                with gr.Column():
                    question_input = gr.Textbox(
                        label="Your Question",
                        placeholder="What would you like to know about your documents?",
                        lines=3
                    )
                    ask_btn = gr.Button("πŸ” Get Answer", variant="primary")
                
                with gr.Column():
                    answer_output = gr.Textbox(
                        label="Answer",
                        lines=10,
                        interactive=False
                    )
            
            ask_btn.click(
                fn=rag_system.answer_question,
                inputs=[question_input],
                outputs=[answer_output]
            )
            
            # Example questions
            gr.Markdown("""
            ### πŸ’‘ Example Questions:
            - What is the main topic of the document?
            - Can you summarize the key points?
            - What are the conclusions mentioned?
            - Are there any specific numbers or statistics?
            """)
    
    return demo

# Launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )