File size: 10,455 Bytes
fd77b07
 
1dedfac
 
fd77b07
 
 
 
 
 
a8283c8
fd77b07
611ac83
fd77b07
 
 
 
 
d7bf74b
fd77b07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6705397
fd77b07
 
 
 
 
 
 
 
 
 
c8716d2
fd77b07
 
 
 
 
 
 
c8716d2
253bfed
fd77b07
 
 
 
 
 
 
 
 
253bfed
fd77b07
253bfed
fd77b07
 
 
 
 
 
 
 
 
 
1dedfac
fd77b07
 
 
 
 
 
 
 
 
 
 
 
 
 
1dedfac
fd77b07
 
 
 
 
 
 
 
 
 
 
 
3406461
fd77b07
 
3406461
fd77b07
 
dcc21e5
fd77b07
 
 
1dedfac
fd77b07
 
 
 
 
1dedfac
fd77b07
 
1dedfac
fd77b07
611ac83
fd77b07
 
 
 
 
 
 
 
 
 
 
 
1dedfac
fd77b07
1dedfac
fd77b07
 
 
 
 
c8716d2
 
fd77b07
 
 
c8716d2
 
 
 
fd77b07
 
 
 
c8716d2
fd77b07
 
c8716d2
fd77b07
 
c8716d2
fd77b07
 
 
 
c8716d2
fd77b07
c8716d2
 
 
fd77b07
dcc21e5
fd77b07
 
 
 
 
dcc21e5
fd77b07
 
 
dcc21e5
fd77b07
 
 
dcc21e5
fd77b07
 
 
 
 
 
 
 
 
 
 
 
 
 
dcc21e5
fd77b07
dcc21e5
fd77b07
 
dcc21e5
fd77b07
 
 
 
 
 
 
 
dcc21e5
253bfed
1dedfac
253bfed
1dedfac
fd77b07
1dedfac
fd77b07
 
 
1dedfac
 
3406461
1dedfac
 
fd77b07
3406461
1dedfac
fd77b07
 
1dedfac
c8716d2
1dedfac
 
fd77b07
 
3406461
253bfed
3406461
1dedfac
fd77b07
 
 
1dedfac
fd77b07
9b56ad1
6705397
fd77b07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import re
import os
import faiss
import numpy as np
import gradio as gr
from typing import List
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from PyPDF2 import PdfReader
import docx2txt

# === Helper functions ===

def clean_text(text: str) -> str:
    """Clean and normalize text."""
    text = re.sub(r'\s+', ' ', text)  # normalize whitespace
    text = text.strip()
    return text

def chunk_text(text: str, max_chunk_size: int = 300, overlap: int = 50) -> List[str]:
    """Split text into smaller overlapping chunks for better semantic search."""
    sentences = re.split(r'(?<=[.?!])\s+', text)
    chunks = []
    chunk = ""
    for sentence in sentences:
        if len(chunk) + len(sentence) <= max_chunk_size:
            chunk += sentence + " "
        else:
            chunks.append(chunk.strip())
            chunk = sentence + " "
    if chunk:
        chunks.append(chunk.strip())
    # Add overlapping between chunks to retain context
    overlapped_chunks = []
    for i in range(len(chunks)):
        combined = chunks[i]
        if i > 0:
            combined = chunks[i-1][-overlap:] + " " + combined
        overlapped_chunks.append(clean_text(combined))
    return overlapped_chunks

def extract_text_from_pdf(file_path: str) -> str:
    """Extract text from PDF file."""
    text = ""
    try:
        reader = PdfReader(file_path)
        for page in reader.pages:
            text += page.extract_text() + " "
    except Exception as e:
        print(f"Error reading PDF {file_path}: {e}")
    return clean_text(text)

def extract_text_from_docx(file_path: str) -> str:
    """Extract text from DOCX file."""
    try:
        text = docx2txt.process(file_path)
        return clean_text(text)
    except Exception as e:
        print(f"Error reading DOCX {file_path}: {e}")
        return ""

def extract_text_from_txt(file_path: str) -> str:
    """Extract text from TXT file."""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
        return clean_text(text)
    except Exception as e:
        print(f"Error reading TXT {file_path}: {e}")
        return ""

# === Main RAG System ===

class SmartDocumentRAG:
    def __init__(self):
        # Model & embedding initialization
        self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        self.qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
        self.documents = []
        self.chunks = []
        self.index = None
        self.is_indexed = False
        self.document_summary = ""
    
    def process_documents(self, uploaded_files) -> str:
        """Load, extract, chunk, embed, and index documents."""
        if not uploaded_files:
            return "⚠️ No files uploaded."
        
        self.documents.clear()
        self.chunks.clear()
        all_text = ""
        
        # Extract text from each uploaded file
        for file_obj in uploaded_files:
            # Save file temporarily to disk to process
            file_path = file_obj.name
            ext = os.path.splitext(file_path)[1].lower()
            text = ""
            if ext == ".pdf":
                text = extract_text_from_pdf(file_path)
            elif ext == ".docx":
                text = extract_text_from_docx(file_path)
            elif ext == ".txt":
                text = extract_text_from_txt(file_path)
            else:
                continue  # skip unsupported
            
            if text:
                self.documents.append(text)
                all_text += text + " "
        
        if not all_text.strip():
            return "⚠️ No extractable text found in uploaded files."
        
        # Create chunks for semantic search
        self.chunks = chunk_text(all_text)
        
        # Create embeddings for chunks
        embeddings = self.embedder.encode(self.chunks, convert_to_numpy=True)
        embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)  # normalize
        
        # Create FAISS index
        dim = embeddings.shape[1]
        self.index = faiss.IndexFlatIP(dim)
        self.index.add(embeddings.astype('float32'))
        self.is_indexed = True
        
        # Create simple summary
        self.document_summary = self.generate_summary(all_text)
        
        return f"βœ… Processed {len(self.documents)} document(s), {len(self.chunks)} chunks indexed."
    
    def generate_summary(self, text: str) -> str:
        """Generate a simple summary using top sentences."""
        sentences = re.split(r'(?<=[.?!])\s+', text)
        summary = ' '.join(sentences[:5])  # first 5 sentences as naive summary
        return summary
    
    def find_relevant_content(self, query: str, top_k: int = 3) -> str:
        """Perform semantic search to find relevant content chunks."""
        if not self.is_indexed or not self.chunks:
            return ""
        query_emb = self.embedder.encode([query], convert_to_numpy=True)
        query_emb = query_emb / np.linalg.norm(query_emb, axis=1, keepdims=True)
        
        scores, indices = self.index.search(query_emb.astype('float32'), min(top_k, len(self.chunks)))
        
        relevant_chunks = []
        for i, idx in enumerate(indices[0]):
            if scores[0][i] > 0.1:
                relevant_chunks.append(self.chunks[idx])
        return " ".join(relevant_chunks)
    
    def extract_direct_answer(self, query: str, context: str) -> str:
        """Simple regex-based fallback extraction."""
        q = query.lower()
        if any(word in q for word in ['name', 'who is', 'who']):
            names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', context)
            if names:
                return f"**Name:** {names[0]}"
        
        if any(word in q for word in ['experience', 'years']):
            years = re.findall(r'(\d+)[\+\-\s]*(?:years?|yrs?)', context.lower())
            if years:
                return f"**Experience:** {years[0]} years"
        
        if any(word in q for word in ['skill', 'technology', 'tech']):
            skills = re.findall(r'\b(?:Python|Java|JavaScript|React|Node|SQL|AWS|Docker|Kubernetes|Git|HTML|CSS|Angular|Vue|Spring|Django|Flask|MongoDB|PostgreSQL)\b', context, re.I)
            if skills:
                unique_skills = sorted(set(skills), key=skills.index)
                return f"**Skills:** {', '.join(unique_skills)}"
        
        if any(word in q for word in ['education', 'degree', 'university']):
            edu = re.findall(r'(?:Bachelor|Master|PhD|B\.?S\.?|M\.?S\.?|B\.?A\.?|M\.?A\.?).*?(?:in|of)\s+([^.]+)', context, re.I)
            if edu:
                return f"**Education:** {edu[0]}"
        
        # Fallback: first sentence from context
        sentences = [s.strip() for s in context.split('.') if s.strip()]
        if sentences:
            return f"**Answer:** {sentences[0]}"
        return "I found relevant content but could not extract a specific answer."
    
    def answer_question(self, query: str) -> str:
        if not query.strip():
            return "❓ Please ask a question."
        if not self.is_indexed:
            return "πŸ“ Please upload and process documents first."
        
        q_lower = query.lower()
        if any(word in q_lower for word in ['summary', 'summarize', 'overview', 'about']):
            return f"πŸ“„ **Document Summary:**\n\n{self.document_summary}"
        
        context = self.find_relevant_content(query, top_k=3)
        if not context:
            return "πŸ” No relevant information found. Try rephrasing your question."
        
        try:
            # Use model for QA
            result = self.qa_pipeline(question=query, context=context)
            answer = result.get('answer', '').strip()
            score = result.get('score', 0)
            
            # Confidence threshold to fallback to regex extraction
            if score < 0.1 or not answer:
                return self.extract_direct_answer(query, context)
            return f"**Answer:** {answer}\n\n**Context:** {context[:200]}..."
        
        except Exception as e:
            print(f"QA model error: {e}")
            return self.extract_direct_answer(query, context)

# === Gradio UI ===

def main():
    rag = SmartDocumentRAG()

    def process_files(files):
        return rag.process_documents(files)
    
    def ask_question(question):
        return rag.answer_question(question)
    
    def get_summary():
        return rag.answer_question("summary")
    
    with gr.Blocks(title="🧠 Enhanced Document Q&A", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🧠 Enhanced Document Q&A System
        
        **Optimized with Better Models & Semantic Search**
        
        - Upload PDF, DOCX, TXT files
        - Semantic search + QA pipeline
        - Direct answer extraction fallback
        """)
        
        with gr.Tab("πŸ“€ Upload & Process"):
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(label="πŸ“ Upload Documents", file_types=['.pdf','.docx','.txt'], file_count="multiple", height=150)
                    process_btn = gr.Button("πŸ”„ Process Documents", variant="primary", size="lg")
                with gr.Column():
                    process_status = gr.Textbox(label="πŸ“‹ Processing Status", lines=10, interactive=False)
            process_btn.click(fn=process_files, inputs=file_upload, outputs=process_status)
        
        with gr.Tab("❓ Q&A"):
            with gr.Row():
                with gr.Column():
                    question_input = gr.Textbox(label="πŸ€” Ask Your Question", lines=3,
                        placeholder="Name? Experience? Skills? Education?")
                    with gr.Row():
                        ask_btn = gr.Button("🧠 Get Answer", variant="primary")
                        summary_btn = gr.Button("πŸ“Š Get Summary", variant="secondary")
                with gr.Column():
                    answer_output = gr.Textbox(label="πŸ’‘ Answer", lines=8, interactive=False)
            ask_btn.click(fn=ask_question, inputs=question_input, outputs=answer_output)
            summary_btn.click(fn=get_summary, inputs=None, outputs=answer_output)
    
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)

if __name__ == "__main__":
    main()