Spaces:
Running
Running
File size: 28,114 Bytes
9b56ad1 1dedfac c8716d2 6705397 1dedfac d7bf74b 3406461 253bfed c8716d2 6705397 3406461 1dedfac 253bfed 1dedfac 253bfed c8716d2 1dedfac c8716d2 1dedfac 253bfed 1dedfac 3406461 253bfed c8716d2 1dedfac c8716d2 a8283c8 c8716d2 3406461 c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 a8283c8 c8716d2 a8283c8 c8716d2 a8283c8 c8716d2 1dedfac c8716d2 1dedfac 253bfed c8716d2 611ac83 3406461 253bfed 3406461 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed 3406461 253bfed d7bf74b 253bfed c8716d2 253bfed d7bf74b 3406461 253bfed 3406461 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed 3406461 253bfed 3406461 6705397 c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed c8716d2 253bfed 1dedfac c8716d2 1dedfac c8716d2 1dedfac c8716d2 3406461 c8716d2 253bfed c8716d2 253bfed 1dedfac 253bfed 1dedfac 3406461 1dedfac 3406461 253bfed 1dedfac 253bfed 3406461 1dedfac 3406461 c8716d2 3406461 c8716d2 1dedfac dcc21e5 1dedfac dcc21e5 1dedfac dcc21e5 1dedfac dcc21e5 1dedfac 253bfed 1dedfac 253bfed 1dedfac 253bfed d7bf74b 3406461 1dedfac 253bfed 3406461 1dedfac 3406461 c8716d2 1dedfac 253bfed 1dedfac 253bfed 1dedfac 3406461 c8716d2 253bfed c8716d2 1dedfac c8716d2 dcc21e5 1dedfac c8716d2 1dedfac c8716d2 1dedfac 253bfed 1dedfac c8716d2 253bfed dcc21e5 c8716d2 3406461 c8716d2 dcc21e5 1dedfac 253bfed c8716d2 dcc21e5 611ac83 1dedfac dcc21e5 1dedfac 3406461 c8716d2 dcc21e5 c8716d2 253bfed 3406461 dcc21e5 c8716d2 1dedfac c8716d2 1dedfac dcc21e5 c8716d2 1dedfac c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 dcc21e5 c8716d2 1dedfac 3406461 dcc21e5 c8716d2 ea914de dcc21e5 c8716d2 253bfed 3406461 9b56ad1 253bfed 1dedfac 253bfed 1dedfac 253bfed 1dedfac c8716d2 1dedfac c8716d2 253bfed c8716d2 1dedfac 3406461 1dedfac 3406461 1dedfac 3406461 1dedfac 3406461 1dedfac c8716d2 3406461 1dedfac c8716d2 1dedfac 253bfed c8716d2 1dedfac 3406461 253bfed 3406461 1dedfac c8716d2 3406461 1dedfac 3406461 1dedfac 9b56ad1 253bfed 6705397 1dedfac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import PyPDF2
import docx
import io
import os
import re
from typing import List, Optional, Dict, Tuple
import json
from collections import Counter
import warnings
warnings.filterwarnings("ignore")
class SmartDocumentRAG:
def __init__(self):
print("π Initializing Enhanced Smart RAG System...")
# Initialize better embedding model
self.embedder = SentenceTransformer('all-MiniLM-L6-v2') # Faster and good quality
print("β
Embedding model loaded")
# Initialize optimized LLM with better quantization
self.setup_llm()
# Document storage
self.documents = []
self.document_metadata = []
self.index = None
self.is_indexed = False
self.raw_text = ""
self.document_type = "general"
self.document_summary = ""
self.sentence_embeddings = []
self.sentences = []
def setup_llm(self):
"""Setup optimized model with better quantization"""
try:
# Check CUDA availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"π§ Using device: {device}")
if device == "cuda":
self.setup_gpu_model()
else:
self.setup_cpu_model()
except Exception as e:
print(f"β Error loading models: {e}")
self.setup_fallback_model()
def setup_gpu_model(self):
"""Setup GPU model with proper quantization"""
try:
# Use Phi-2 - excellent for Q&A and reasoning
model_name = "microsoft/DialoGPT-medium"
# Better quantization config
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_quant_storage=torch.uint8
)
try:
# Try Flan-T5 first - excellent for Q&A
model_name = "google/flan-t5-base"
print(f"π€ Loading {model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
# Create pipeline for easier use
self.qa_pipeline = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=512,
do_sample=True,
temperature=0.3,
top_p=0.9
)
print("β
Flan-T5 model loaded successfully")
self.model_type = "flan-t5"
except Exception as e:
print(f"Flan-T5 failed, trying Phi-2: {e}")
# Try Phi-2 as backup
model_name = "microsoft/phi-2"
print(f"π€ Loading {model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print("β
Phi-2 model loaded successfully")
self.model_type = "phi-2"
except Exception as e:
print(f"β GPU models failed: {e}")
self.setup_cpu_model()
def setup_cpu_model(self):
"""Setup CPU-optimized model"""
try:
# Use DistilBERT for Q&A - much better than DialoGPT for this task
model_name = "distilbert-base-cased-distilled-squad"
print(f"π€ Loading CPU model: {model_name}")
self.qa_pipeline = pipeline(
"question-answering",
model=model_name,
tokenizer=model_name
)
self.model_type = "distilbert-qa"
print("β
DistilBERT Q&A model loaded successfully")
except Exception as e:
print(f"β CPU model failed: {e}")
self.setup_fallback_model()
def setup_fallback_model(self):
"""Fallback to basic model"""
try:
print("π€ Loading fallback model...")
self.qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
self.model_type = "fallback"
print("β
Fallback model loaded")
except Exception as e:
print(f"β All models failed: {e}")
self.qa_pipeline = None
self.model_type = "none"
def detect_document_type(self, text: str) -> str:
"""Enhanced document type detection"""
text_lower = text.lower()
resume_patterns = [
'experience', 'skills', 'education', 'linkedin', 'email', 'phone',
'work experience', 'employment', 'resume', 'cv', 'curriculum vitae',
'internship', 'projects', 'achievements', 'career', 'profile', 'objective'
]
research_patterns = [
'abstract', 'introduction', 'methodology', 'conclusion', 'references',
'literature review', 'hypothesis', 'study', 'research', 'findings',
'data analysis', 'results', 'discussion', 'bibliography', 'journal'
]
business_patterns = [
'company', 'revenue', 'market', 'strategy', 'business', 'financial',
'quarter', 'profit', 'sales', 'growth', 'investment', 'stakeholder',
'operations', 'management', 'corporate', 'enterprise', 'budget'
]
technical_patterns = [
'implementation', 'algorithm', 'system', 'technical', 'specification',
'architecture', 'development', 'software', 'programming', 'api',
'database', 'framework', 'deployment', 'infrastructure', 'code'
]
def count_matches(patterns, text):
score = 0
for pattern in patterns:
count = text.count(pattern)
score += count * (2 if len(pattern.split()) > 1 else 1) # Weight phrases higher
return score
scores = {
'resume': count_matches(resume_patterns, text_lower),
'research': count_matches(research_patterns, text_lower),
'business': count_matches(business_patterns, text_lower),
'technical': count_matches(technical_patterns, text_lower)
}
max_score = max(scores.values())
if max_score > 5: # Higher threshold
return max(scores, key=scores.get)
return 'general'
def create_document_summary(self, text: str) -> str:
"""Enhanced document summary creation"""
try:
clean_text = re.sub(r'\s+', ' ', text).strip()
sentences = re.split(r'[.!?]+', clean_text)
sentences = [s.strip() for s in sentences if len(s.strip()) > 30]
if not sentences:
return "Document contains basic information."
# Use first few sentences and key information
if self.document_type == 'resume':
return self.extract_resume_summary(sentences, clean_text)
elif self.document_type == 'research':
return self.extract_research_summary(sentences)
elif self.document_type == 'business':
return self.extract_business_summary(sentences)
else:
return self.extract_general_summary(sentences)
except Exception as e:
print(f"Summary creation error: {e}")
return "Document summary not available."
def extract_resume_summary(self, sentences: List[str], full_text: str) -> str:
"""Extract resume-specific summary with better name detection"""
summary_parts = []
# Extract name using multiple patterns
name = self.extract_name(full_text)
if name:
summary_parts.append(f"Resume of {name}")
# Extract role/title
role_patterns = [
r'(?:software|senior|junior|lead|principal)?\s*(?:engineer|developer|analyst|manager|designer|architect|consultant)',
r'(?:full stack|frontend|backend|data|ml|ai)\s*(?:engineer|developer)',
r'(?:product|project|technical)\s*manager'
]
for sentence in sentences[:5]:
for pattern in role_patterns:
matches = re.findall(pattern, sentence.lower())
if matches:
summary_parts.append(f"working as {matches[0].title()}")
break
# Extract experience
exp_match = re.search(r'(\d+)[\+\-\s]*(?:years?|yrs?)\s*(?:of\s*)?(?:experience|exp)', full_text.lower())
if exp_match:
summary_parts.append(f"with {exp_match.group(1)}+ years of experience")
return '. '.join(summary_parts) + '.' if summary_parts else "Professional resume with career details."
def extract_name(self, text: str) -> str:
"""Extract name from document using multiple strategies"""
# Strategy 1: Look for name patterns at the beginning
lines = text.split('\n')[:10] # First 10 lines
for line in lines:
line = line.strip()
if len(line) < 50 and len(line) > 3: # Likely a header line
# Check if it looks like a name
name_match = re.match(r'^([A-Z][a-z]+\s+[A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)(?:\s|$)', line)
if name_match:
return name_match.group(1)
# Strategy 2: Look for "Name:" pattern
name_patterns = [
r'(?:name|full name):\s*([A-Z][a-z]+\s+[A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)',
r'^([A-Z][a-z]+\s+[A-Z][a-z]+)(?:\s*\n|\s*email|\s*phone|\s*linkedin)',
]
for pattern in name_patterns:
match = re.search(pattern, text, re.MULTILINE | re.IGNORECASE)
if match:
return match.group(1)
return ""
def extract_research_summary(self, sentences: List[str]) -> str:
"""Extract research paper summary"""
# Look for abstract or introduction
for sentence in sentences[:5]:
if any(word in sentence.lower() for word in ['abstract', 'study', 'research', 'paper']):
return sentence[:200] + ('...' if len(sentence) > 200 else '')
return "Research document with academic content."
def extract_business_summary(self, sentences: List[str]) -> str:
"""Extract business document summary"""
for sentence in sentences[:3]:
if any(word in sentence.lower() for word in ['company', 'business', 'organization']):
return sentence[:200] + ('...' if len(sentence) > 200 else '')
return "Business document with organizational information."
def extract_general_summary(self, sentences: List[str]) -> str:
"""Extract general document summary"""
return sentences[0][:200] + ('...' if len(sentences[0]) > 200 else '') if sentences else "General document."
def extract_text_from_file(self, file_path: str) -> str:
"""Enhanced text extraction"""
try:
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == '.pdf':
return self.extract_from_pdf(file_path)
elif file_extension == '.docx':
return self.extract_from_docx(file_path)
elif file_extension == '.txt':
return self.extract_from_txt(file_path)
else:
return f"Unsupported file format: {file_extension}"
except Exception as e:
return f"Error reading file: {str(e)}"
def extract_from_pdf(self, file_path: str) -> str:
"""Enhanced PDF extraction"""
text = ""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text.strip():
# Better text cleaning
page_text = re.sub(r'\s+', ' ', page_text)
page_text = re.sub(r'([a-z])([A-Z])', r'\1 \2', page_text) # Fix merged words
text += f"{page_text}\n"
except Exception as e:
text = f"Error reading PDF: {str(e)}"
return text.strip()
def extract_from_docx(self, file_path: str) -> str:
"""Enhanced DOCX extraction"""
try:
doc = docx.Document(file_path)
text = ""
for paragraph in doc.paragraphs:
if paragraph.text.strip():
text += paragraph.text.strip() + "\n"
return text.strip()
except Exception as e:
return f"Error reading DOCX: {str(e)}"
def extract_from_txt(self, file_path: str) -> str:
"""Enhanced TXT extraction"""
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
for encoding in encodings:
try:
with open(file_path, 'r', encoding=encoding) as file:
return file.read().strip()
except UnicodeDecodeError:
continue
except Exception as e:
return f"Error reading TXT: {str(e)}"
return "Error: Could not decode file"
def enhanced_chunk_text(self, text: str, max_chunk_size: int = 300, overlap: int = 50) -> list[str]:
"""
Splits text into smaller overlapping chunks for better semantic search.
Args:
text (str): The full text to chunk.
max_chunk_size (int): Maximum tokens/words per chunk.
overlap (int): Number of words overlapping between consecutive chunks.
Returns:
list[str]: List of text chunks.
"""
import re
# Clean and normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
words = text.split()
chunks = []
start = 0
text_len = len(words)
while start < text_len:
end = min(start + max_chunk_size, text_len)
chunk_words = words[start:end]
chunk = ' '.join(chunk_words)
chunks.append(chunk)
# Move start forward by chunk size minus overlap to create overlap
start += max_chunk_size - overlap
return chunks
def process_documents(self, files) -> str:
"""Enhanced document processing"""
if not files:
return "β No files uploaded!"
try:
all_text = ""
processed_files = []
for file in files:
if file is None:
continue
file_text = self.extract_text_from_file(file.name)
if not file_text.startswith("Error") and not file_text.startswith("Unsupported"):
all_text += f"\n{file_text}"
processed_files.append(os.path.basename(file.name))
else:
return f"β {file_text}"
if not all_text.strip():
return "β No text extracted from files!"
# Store and analyze
self.raw_text = all_text
self.document_type = self.detect_document_type(all_text)
self.document_summary = self.create_document_summary(all_text)
# Enhanced chunking
chunk_data = self.enhanced_chunk_text(all_text)
if not chunk_data:
return "β No valid text chunks created!"
self.documents = [chunk['text'] for chunk in chunk_data]
self.document_metadata = chunk_data
# Create embeddings
print(f"π Creating embeddings for {len(self.documents)} chunks...")
embeddings = self.embedder.encode(self.documents, show_progress_bar=False)
# Build FAISS index
dimension = embeddings.shape[1]
self.index = faiss.IndexFlatIP(dimension)
# Normalize for cosine similarity
faiss.normalize_L2(embeddings)
self.index.add(embeddings.astype('float32'))
self.is_indexed = True
return f"β
Successfully processed {len(processed_files)} files:\n" + \
f"π Files: {', '.join(processed_files)}\n" + \
f"π Document Type: {self.document_type.title()}\n" + \
f"π Created {len(self.documents)} chunks\n" + \
f"π Summary: {self.document_summary}\n" + \
f"π Ready for Q&A!"
except Exception as e:
return f"β Error processing documents: {str(e)}"
def find_relevant_content(self, query: str, k: int = 3) -> str:
"""Improved content retrieval with stricter relevance filter"""
if not self.is_indexed:
return ""
try:
# Semantic search
query_embedding = self.embedder.encode([query])
faiss.normalize_L2(query_embedding)
scores, indices = self.index.search(query_embedding.astype('float32'), min(k, len(self.documents)))
relevant_chunks = []
for i, idx in enumerate(indices[0]):
score = scores[0][i]
if idx < len(self.documents) and score > 0.4: # β
stricter similarity filter
relevant_chunks.append(self.documents[idx])
return ' '.join(relevant_chunks)
except Exception as e:
print(f"Error in content retrieval: {e}")
return ""
def answer_question(self, query: str) -> str:
"""Enhanced question answering with better model usage and hallucination reduction."""
if not query.strip():
return "β Please ask a question!"
if not self.is_indexed:
return "π Please upload and process documents first!"
try:
query_lower = query.lower()
# Handle summary requests explicitly
if any(word in query_lower for word in ['summary', 'summarize', 'about', 'overview']):
return f"π **Document Summary:**\n\n{self.document_summary}"
# Retrieve relevant content chunks via semantic search
context = self.find_relevant_content(query, k=3)
if not context:
return "π No relevant information found. Try rephrasing your question."
# If no QA pipeline, fall back to direct extraction
if self.qa_pipeline is None:
return self.extract_direct_answer(query, context)
try:
if self.model_type in ["distilbert-qa", "fallback"]:
# Use extractive Q&A pipeline
result = self.qa_pipeline(question=query, context=context)
answer = result.get('answer', '').strip()
confidence = result.get('score', 0)
if confidence > 0.1 and answer:
return f"**Answer:** {answer}\n\n**Context:** {context[:200]}..."
else:
return self.extract_direct_answer(query, context)
elif self.model_type == "flan-t5":
# Use generative model with improved prompt to reduce hallucination
prompt = (
f"Answer concisely and strictly based on the following context.\n\n"
f"Context:\n{context}\n\n"
f"Question:\n{query}\n\n"
f"If the answer is not contained in the context, reply with 'Not found in document.'\n"
f"Answer:"
)
result = self.qa_pipeline(prompt, max_length=256, num_return_sequences=1)
generated_text = result[0].get('generated_text', '')
answer = generated_text.replace(prompt, '').strip()
if answer.lower() in ["not found in document.", "no answer", "unknown", ""]:
return "π Sorry, the answer was not found in the documents."
else:
return f"**Answer:** {answer}"
else:
# Default fallback extraction
return self.extract_direct_answer(query, context)
except Exception as e:
print(f"Model inference error: {e}")
return self.extract_direct_answer(query, context)
except Exception as e:
return f"β Error processing question: {str(e)}"
def extract_direct_answer(self, query: str, context: str) -> str:
"""Direct answer extraction as fallback"""
query_lower = query.lower()
# Name extraction
if any(word in query_lower for word in ['name', 'who is', 'who']):
names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', context)
if names:
return f"**Name:** {names[0]}"
# Experience extraction
if any(word in query_lower for word in ['experience', 'years']):
exp_matches = re.findall(r'(\d+)[\+\-\s]*(?:years?|yrs?)', context.lower())
if exp_matches:
return f"**Experience:** {exp_matches[0]} years"
# Skills extraction
if any(word in query_lower for word in ['skill', 'technology', 'tech']):
# Common tech skills
tech_patterns = [
r'\b(?:Python|Java|JavaScript|React|Node|SQL|AWS|Docker|Kubernetes|Git)\b',
r'\b(?:HTML|CSS|Angular|Vue|Spring|Django|Flask|MongoDB|PostgreSQL)\b'
]
skills = []
for pattern in tech_patterns:
skills.extend(re.findall(pattern, context, re.IGNORECASE))
if skills:
return f"**Skills mentioned:** {', '.join(set(skills))}"
# Education extraction
if any(word in query_lower for word in ['education', 'degree', 'university']):
edu_matches = re.findall(r'(?:Bachelor|Master|PhD|B\.?S\.?|M\.?S\.?|B\.?A\.?|M\.?A\.?).*?(?:in|of)\s+([^.]+)', context)
if edu_matches:
return f"**Education:** {edu_matches[0]}"
# Return first relevant sentence
sentences = [s.strip() for s in context.split('.') if s.strip()]
if sentences:
return f"**Answer:** {sentences[0]}"
return "I found relevant content but couldn't extract a specific answer."
def clean_text(self, text: str) -> str:
"""
Clean and normalize raw text by:
- Removing excessive whitespace
- Fixing merged words (camel case separation)
- Removing unwanted characters (optional)
- Lowercasing or preserving case (optional)
"""
import re
# Replace multiple whitespace/newlines/tabs with single space
text = re.sub(r'\s+', ' ', text).strip()
# Fix merged words like 'wordAnotherWord' -> 'word Another Word'
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text)
# Optional: remove special characters except basic punctuation
# text = re.sub(r'[^a-zA-Z0-9,.!?;:\'\"()\-\s]', '', text)
return text
# Initialize the system
print("Initializing Enhanced Smart RAG System...")
rag_system = SmartDocumentRAG()
# Create the interface
def create_interface():
with gr.Blocks(title="π§ Enhanced Document Q&A", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π§ Enhanced Document Q&A System
**Optimized with Better Models & Quantization!**
**Features:**
- π― Flan-T5 or DistilBERT for accurate Q&A
- β‘ 4-bit quantization for GPU efficiency
- π Direct answer extraction
- π Enhanced semantic search
""")
with gr.Tab("π€ Upload & Process"):
with gr.Row():
with gr.Column():
file_upload = gr.File(
label="π Upload Documents",
file_count="multiple",
file_types=[".pdf", ".docx", ".txt"],
height=150
)
process_btn = gr.Button("π Process Documents", variant="primary", size="lg")
with gr.Column():
process_status = gr.Textbox(
label="π Processing Status",
lines=10,
interactive=False
)
process_btn.click(
fn=rag_system.process_documents,
inputs=[file_upload],
outputs=[process_status]
)
with gr.Tab("β Q&A"):
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="π€ Ask Your Question",
placeholder="What is the person's name? / How many years of experience? / What skills do they have?",
lines=3
)
with gr.Row():
ask_btn = gr.Button("π§ Get Answer", variant="primary")
summary_btn = gr.Button("π Get Summary", variant="secondary")
with gr.Column():
answer_output = gr.Textbox(
label="π‘ Answer",
lines=8,
interactive=False
)
ask_btn.click(
fn=rag_system.answer_question,
inputs=[question_input],
outputs=[answer_output]
)
summary_btn.click(
fn=lambda: rag_system.answer_question("summary"),
inputs=[],
outputs=[answer_output]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |