Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from sentence_transformers import SentenceTransformer
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
@@ -5,20 +6,29 @@ import faiss
|
|
| 5 |
import numpy as np
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
import fitz # PyMuPDF
|
|
|
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
| 11 |
|
|
|
|
| 12 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_id,
|
| 16 |
device_map="auto",
|
| 17 |
-
load_in_4bit=True
|
|
|
|
| 18 |
)
|
| 19 |
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 20 |
|
| 21 |
-
# Globals
|
| 22 |
index = None
|
| 23 |
doc_texts = []
|
| 24 |
|
|
@@ -35,7 +45,7 @@ def extract_text(file):
|
|
| 35 |
else:
|
| 36 |
return "❌ Invalid file type."
|
| 37 |
|
| 38 |
-
# File processing
|
| 39 |
def process_file(file):
|
| 40 |
global index, doc_texts
|
| 41 |
text = extract_text(file)
|
|
@@ -52,9 +62,10 @@ def process_file(file):
|
|
| 52 |
|
| 53 |
return "✅ File processed successfully. You can now ask questions!"
|
| 54 |
|
| 55 |
-
#
|
| 56 |
def generate_answer(question):
|
| 57 |
-
|
|
|
|
| 58 |
return "⚠️ Please upload and process a file first."
|
| 59 |
|
| 60 |
question_embedding = embed_model.encode([question])
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
import fitz # PyMuPDF
|
| 9 |
+
from huggingface_hub import login
|
| 10 |
|
| 11 |
+
# Authenticate with Hugging Face to access gated models
|
| 12 |
+
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 13 |
+
if hf_token is None:
|
| 14 |
+
raise ValueError("Please set the HUGGINGFACE_TOKEN environment variable")
|
| 15 |
+
login(token=hf_token)
|
| 16 |
+
|
| 17 |
+
# Load embedding model
|
| 18 |
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
| 19 |
|
| 20 |
+
# Load LLM model and tokenizer with 4bit quantization
|
| 21 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
model_id,
|
| 25 |
device_map="auto",
|
| 26 |
+
load_in_4bit=True,
|
| 27 |
+
use_auth_token=hf_token
|
| 28 |
)
|
| 29 |
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 30 |
|
| 31 |
+
# Globals for FAISS index and document texts
|
| 32 |
index = None
|
| 33 |
doc_texts = []
|
| 34 |
|
|
|
|
| 45 |
else:
|
| 46 |
return "❌ Invalid file type."
|
| 47 |
|
| 48 |
+
# File processing: chunk text, create embeddings, build FAISS index
|
| 49 |
def process_file(file):
|
| 50 |
global index, doc_texts
|
| 51 |
text = extract_text(file)
|
|
|
|
| 62 |
|
| 63 |
return "✅ File processed successfully. You can now ask questions!"
|
| 64 |
|
| 65 |
+
# Generate answer using retrieved context and LLM
|
| 66 |
def generate_answer(question):
|
| 67 |
+
global index, doc_texts
|
| 68 |
+
if index is None or len(doc_texts) == 0:
|
| 69 |
return "⚠️ Please upload and process a file first."
|
| 70 |
|
| 71 |
question_embedding = embed_model.encode([question])
|