Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,34 +27,49 @@ class DocumentRAG:
|
|
27 |
self.is_indexed = False
|
28 |
|
29 |
def setup_llm(self):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
bnb_4bit_use_double_quant=True,
|
36 |
-
bnb_4bit_quant_type="nf4"
|
37 |
-
)
|
38 |
-
|
39 |
-
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
40 |
-
|
41 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
-
if self.tokenizer.pad_token is None:
|
43 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
44 |
-
|
45 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
model_name,
|
47 |
-
quantization_config=quantization_config,
|
48 |
-
device_map="auto",
|
49 |
-
torch_dtype=torch.float16,
|
50 |
-
trust_remote_code=True
|
51 |
-
)
|
52 |
-
print("✅ Quantized Mistral model loaded")
|
53 |
-
|
54 |
-
except Exception as e:
|
55 |
-
print(f"❌ Error loading model: {e}")
|
56 |
-
# Fallback to a smaller model if Mistral fails
|
57 |
self.setup_fallback_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def setup_fallback_model(self):
|
60 |
"""Fallback to smaller model if Mistral fails"""
|
|
|
27 |
self.is_indexed = False
|
28 |
|
29 |
def setup_llm(self):
|
30 |
+
"""Setup quantized Mistral model"""
|
31 |
+
try:
|
32 |
+
# Check if CUDA is available
|
33 |
+
if not torch.cuda.is_available():
|
34 |
+
print("⚠️ CUDA not available, falling back to CPU or alternative model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
self.setup_fallback_model()
|
36 |
+
return
|
37 |
+
|
38 |
+
quantization_config = BitsAndBytesConfig(
|
39 |
+
load_in_4bit=True,
|
40 |
+
bnb_4bit_compute_dtype=torch.float16,
|
41 |
+
bnb_4bit_use_double_quant=True,
|
42 |
+
bnb_4bit_quant_type="nf4"
|
43 |
+
)
|
44 |
+
|
45 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
46 |
+
|
47 |
+
# Load tokenizer first
|
48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
49 |
+
model_name,
|
50 |
+
trust_remote_code=True
|
51 |
+
)
|
52 |
+
|
53 |
+
# Fix padding token issue
|
54 |
+
if self.tokenizer.pad_token is None:
|
55 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
56 |
+
|
57 |
+
# Load model with quantization
|
58 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
model_name,
|
60 |
+
quantization_config=quantization_config,
|
61 |
+
device_map="auto",
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
trust_remote_code=True,
|
64 |
+
low_cpu_mem_usage=True # Added for better memory management
|
65 |
+
)
|
66 |
+
|
67 |
+
print("✅ Quantized Mistral model loaded successfully")
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
print(f"❌ Error loading model: {e}")
|
71 |
+
print("🔄 Falling back to alternative model...")
|
72 |
+
self.setup_fallback_model()
|
73 |
|
74 |
def setup_fallback_model(self):
|
75 |
"""Fallback to smaller model if Mistral fails"""
|