Spaces:
Runtime error
Runtime error
make demo gpu compatible
Browse files- listener.py +66 -44
listener.py
CHANGED
|
@@ -1,24 +1,37 @@
|
|
| 1 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from typing import List, Optional
|
| 4 |
-
from utils import
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from greenery import parse
|
| 7 |
from greenery.parse import NoMatch
|
| 8 |
import numpy as np
|
| 9 |
import torch
|
| 10 |
|
|
|
|
| 11 |
class Agent:
|
| 12 |
-
def __init__(
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 19 |
self.gen_config = GenerationConfig(**gen_config)
|
| 20 |
self.inference_batch_size = inference_batch_size
|
| 21 |
|
|
|
|
| 22 |
@dataclass
|
| 23 |
class ListenerOutput:
|
| 24 |
programs: List[List[str]]
|
|
@@ -27,21 +40,20 @@ class ListenerOutput:
|
|
| 27 |
decoded_scores: Optional[List[List[float]]] = None
|
| 28 |
pruned: Optional[List[List[str]]] = None
|
| 29 |
|
|
|
|
| 30 |
class Listener(Agent):
|
| 31 |
-
def __init__(
|
|
|
|
| 32 |
model_path,
|
| 33 |
-
gen_config,
|
| 34 |
inference_batch_size=4,
|
| 35 |
label_pos="suffix",
|
| 36 |
-
idx: bool=True,
|
| 37 |
program_special_token=PROGRAM_SPECIAL_TOKEN,
|
| 38 |
-
utterances_special_token=UTTERANCES_SPECIAL_TOKEN
|
|
|
|
| 39 |
):
|
| 40 |
-
super().__init__(
|
| 41 |
-
model_path,
|
| 42 |
-
gen_config,
|
| 43 |
-
inference_batch_size,
|
| 44 |
-
)
|
| 45 |
self.label_pos = label_pos
|
| 46 |
self.idx = idx
|
| 47 |
self.program_special_token = program_special_token
|
|
@@ -49,10 +61,10 @@ class Listener(Agent):
|
|
| 49 |
self.utterances_to_string, self.string_to_utterances = (
|
| 50 |
get_utterance_processing_functions(
|
| 51 |
label_pos, idx, separator=utterances_special_token
|
| 52 |
-
)
|
| 53 |
)
|
|
|
|
| 54 |
self.device = self.model.device
|
| 55 |
-
|
| 56 |
def synthesize(self, context, return_scores=False, enforce_consistency=True):
|
| 57 |
# If context is a list of utterances, convert to string
|
| 58 |
if isinstance(context[0], list):
|
|
@@ -61,25 +73,39 @@ class Listener(Agent):
|
|
| 61 |
context_str = context
|
| 62 |
|
| 63 |
context_tokens = self.tokenizer(
|
| 64 |
-
[
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
return_tensors="pt",
|
| 67 |
-
padding=True
|
| 68 |
-
|
| 69 |
-
|
| 70 |
decoder_inputs = self.tokenizer(
|
| 71 |
-
[self.program_special_token for _ in context],
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
|
| 75 |
-
outputs = self.model.generate(
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
-
decoded_batch = byt5_decode_batch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
consistent_programs = []
|
| 85 |
idxs = []
|
|
@@ -94,12 +120,14 @@ class Listener(Agent):
|
|
| 94 |
else:
|
| 95 |
cp.append(p)
|
| 96 |
idx.append(i)
|
| 97 |
-
|
| 98 |
consistent_programs.append(cp)
|
| 99 |
idxs.append(idx)
|
| 100 |
-
|
| 101 |
logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
|
| 102 |
-
gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(
|
|
|
|
|
|
|
| 103 |
gen_probs.masked_fill_(gen_probs.isinf(), 0)
|
| 104 |
scores = gen_probs.sum(-1)
|
| 105 |
n_decoded = scores.shape[0]
|
|
@@ -108,12 +136,6 @@ class Listener(Agent):
|
|
| 108 |
scores_list = scores.tolist()
|
| 109 |
|
| 110 |
if return_scores:
|
| 111 |
-
return ListenerOutput(
|
| 112 |
-
consistent_programs,
|
| 113 |
-
idxs,
|
| 114 |
-
decoded_batch,
|
| 115 |
-
scores_list
|
| 116 |
-
)
|
| 117 |
else:
|
| 118 |
return ListenerOutput(consistent_programs)
|
| 119 |
-
|
|
|
|
| 1 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from typing import List, Optional
|
| 4 |
+
from utils import (
|
| 5 |
+
get_preprocess_function,
|
| 6 |
+
get_utterance_processing_functions,
|
| 7 |
+
byt5_decode_batch,
|
| 8 |
+
consistent,
|
| 9 |
+
)
|
| 10 |
+
from utils import (
|
| 11 |
+
PROGRAM_SPECIAL_TOKEN,
|
| 12 |
+
UTTERANCES_SPECIAL_TOKEN,
|
| 13 |
+
GT_PROGRAM_SPECIAL_TOKEN,
|
| 14 |
+
)
|
| 15 |
from greenery import parse
|
| 16 |
from greenery.parse import NoMatch
|
| 17 |
import numpy as np
|
| 18 |
import torch
|
| 19 |
|
| 20 |
+
|
| 21 |
class Agent:
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
model_path: str,
|
| 25 |
+
gen_config: dict,
|
| 26 |
+
inference_batch_size: int = 1,
|
| 27 |
+
device=None,
|
| 28 |
+
):
|
| 29 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
|
| 30 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 31 |
self.gen_config = GenerationConfig(**gen_config)
|
| 32 |
self.inference_batch_size = inference_batch_size
|
| 33 |
|
| 34 |
+
|
| 35 |
@dataclass
|
| 36 |
class ListenerOutput:
|
| 37 |
programs: List[List[str]]
|
|
|
|
| 40 |
decoded_scores: Optional[List[List[float]]] = None
|
| 41 |
pruned: Optional[List[List[str]]] = None
|
| 42 |
|
| 43 |
+
|
| 44 |
class Listener(Agent):
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
model_path,
|
| 48 |
+
gen_config,
|
| 49 |
inference_batch_size=4,
|
| 50 |
label_pos="suffix",
|
| 51 |
+
idx: bool = True,
|
| 52 |
program_special_token=PROGRAM_SPECIAL_TOKEN,
|
| 53 |
+
utterances_special_token=UTTERANCES_SPECIAL_TOKEN,
|
| 54 |
+
device=None,
|
| 55 |
):
|
| 56 |
+
super().__init__(model_path, gen_config, inference_batch_size, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
self.label_pos = label_pos
|
| 58 |
self.idx = idx
|
| 59 |
self.program_special_token = program_special_token
|
|
|
|
| 61 |
self.utterances_to_string, self.string_to_utterances = (
|
| 62 |
get_utterance_processing_functions(
|
| 63 |
label_pos, idx, separator=utterances_special_token
|
|
|
|
| 64 |
)
|
| 65 |
+
)
|
| 66 |
self.device = self.model.device
|
| 67 |
+
|
| 68 |
def synthesize(self, context, return_scores=False, enforce_consistency=True):
|
| 69 |
# If context is a list of utterances, convert to string
|
| 70 |
if isinstance(context[0], list):
|
|
|
|
| 73 |
context_str = context
|
| 74 |
|
| 75 |
context_tokens = self.tokenizer(
|
| 76 |
+
[
|
| 77 |
+
(
|
| 78 |
+
f"{self.utterances_special_token}{c}"
|
| 79 |
+
if not c.startswith(self.utterances_special_token)
|
| 80 |
+
else c
|
| 81 |
+
)
|
| 82 |
+
for c in context_str
|
| 83 |
+
],
|
| 84 |
return_tensors="pt",
|
| 85 |
+
padding=True,
|
| 86 |
+
).to(self.device)
|
| 87 |
+
|
| 88 |
decoder_inputs = self.tokenizer(
|
| 89 |
+
[self.program_special_token for _ in context],
|
| 90 |
+
return_tensors="pt",
|
| 91 |
+
add_special_tokens=False,
|
| 92 |
+
).to(self.device)
|
| 93 |
|
| 94 |
+
outputs = self.model.generate(
|
| 95 |
+
**context_tokens,
|
| 96 |
+
decoder_input_ids=decoder_inputs.input_ids,
|
| 97 |
+
generation_config=self.gen_config,
|
| 98 |
+
return_dict_in_generate=True,
|
| 99 |
+
output_scores=True,
|
| 100 |
+
)
|
| 101 |
|
| 102 |
+
decoded_batch = byt5_decode_batch(
|
| 103 |
+
outputs.sequences.reshape(
|
| 104 |
+
(len(context), -1, outputs.sequences.shape[-1])
|
| 105 |
+
).tolist(),
|
| 106 |
+
skip_position_token=True,
|
| 107 |
+
skip_special_tokens=True,
|
| 108 |
+
)
|
| 109 |
|
| 110 |
consistent_programs = []
|
| 111 |
idxs = []
|
|
|
|
| 120 |
else:
|
| 121 |
cp.append(p)
|
| 122 |
idx.append(i)
|
| 123 |
+
|
| 124 |
consistent_programs.append(cp)
|
| 125 |
idxs.append(idx)
|
| 126 |
+
|
| 127 |
logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
|
| 128 |
+
gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(
|
| 129 |
+
-1
|
| 130 |
+
)
|
| 131 |
gen_probs.masked_fill_(gen_probs.isinf(), 0)
|
| 132 |
scores = gen_probs.sum(-1)
|
| 133 |
n_decoded = scores.shape[0]
|
|
|
|
| 136 |
scores_list = scores.tolist()
|
| 137 |
|
| 138 |
if return_scores:
|
| 139 |
+
return ListenerOutput(consistent_programs, idxs, decoded_batch, scores_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
else:
|
| 141 |
return ListenerOutput(consistent_programs)
|
|
|