Spaces:
Running
Running
Prajjwal888
commited on
Commit
·
f552345
1
Parent(s):
1f14dbf
Add application file
Browse files- app.py +92 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import re
|
5 |
+
|
6 |
+
model_path = "prajjwal888/Llama-2-7b-chat-question-generation"
|
7 |
+
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_path,
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
device_map="auto"
|
12 |
+
)
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
15 |
+
|
16 |
+
def parse_generated_text(text: str) -> dict:
|
17 |
+
clean_text = re.sub(r"\[/?INST\]", "", text)
|
18 |
+
clean_text = re.sub(r"Question:\s*Question:", "Question:", clean_text)
|
19 |
+
clean_text = clean_text.strip()
|
20 |
+
|
21 |
+
match = re.search(r"Question:\s*(.*?)(?:\nHint:|Hint:)(.*)", clean_text, re.DOTALL)
|
22 |
+
|
23 |
+
if match:
|
24 |
+
question = match.group(1).strip().strip('"').replace("Question:", "").strip()
|
25 |
+
hint = match.group(2).strip().strip('"')
|
26 |
+
else:
|
27 |
+
question = clean_text.strip()
|
28 |
+
hint = "No hint available"
|
29 |
+
|
30 |
+
return {
|
31 |
+
"question": question,
|
32 |
+
"hint": hint
|
33 |
+
}
|
34 |
+
|
35 |
+
def generate_questions(topic, difficulty, types, count):
|
36 |
+
print("Received input:", topic, difficulty, types, count)
|
37 |
+
|
38 |
+
try:
|
39 |
+
pipe = pipeline(
|
40 |
+
task="text-generation",
|
41 |
+
model=model,
|
42 |
+
tokenizer=tokenizer,
|
43 |
+
# device=0,
|
44 |
+
max_length=200,
|
45 |
+
temperature=0.7,
|
46 |
+
top_p=0.9,
|
47 |
+
do_sample=True
|
48 |
+
)
|
49 |
+
|
50 |
+
questions = []
|
51 |
+
|
52 |
+
for _ in range(count):
|
53 |
+
for q_type in types:
|
54 |
+
prompt = (
|
55 |
+
f"Generate a {difficulty} difficulty {q_type} question about {topic}.\n"
|
56 |
+
"Format strictly as follows:\n"
|
57 |
+
"Question: <your question here>\n"
|
58 |
+
"Hint: <your hint here or 'No hint available'>"
|
59 |
+
)
|
60 |
+
|
61 |
+
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
|
62 |
+
print("Prompt:", formatted_prompt)
|
63 |
+
|
64 |
+
result = pipe(formatted_prompt)
|
65 |
+
print("Raw Output:", result)
|
66 |
+
|
67 |
+
generated_text = result[0]['generated_text'].replace(formatted_prompt, "").strip()
|
68 |
+
parsed = parse_generated_text(generated_text)
|
69 |
+
|
70 |
+
questions.append(f"**Type**: {q_type}\n\n**Question**: {parsed['question']}\n\n**Hint**: {parsed['hint']}\n\n---")
|
71 |
+
|
72 |
+
return "\n\n".join(questions)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
print("Error:", e)
|
76 |
+
return f"Something went wrong: {e}"
|
77 |
+
|
78 |
+
iface = gr.Interface(
|
79 |
+
fn=generate_questions,
|
80 |
+
inputs=[
|
81 |
+
gr.Textbox(label="Topic"),
|
82 |
+
gr.Dropdown(choices=["easy", "medium", "hard"], label="Difficulty", value="medium"),
|
83 |
+
gr.CheckboxGroup(choices=["Conceptual", "Numerical", "Application"], label="Question Types"),
|
84 |
+
gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Number of Questions per Type")
|
85 |
+
],
|
86 |
+
outputs=gr.Markdown(label="Generated Questions"),
|
87 |
+
title="AI Question Generator",
|
88 |
+
description="Enter a topic, select difficulty and question types to generate AI-powered questions."
|
89 |
+
)
|
90 |
+
|
91 |
+
iface.queue()
|
92 |
+
iface.launch()
|
requirements.txt
ADDED
Binary file (2.38 kB). View file
|
|