Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# First, make sure you've installed required packages
|
2 |
+
# !pip install -U gradio transformers torch torchvision
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import pipeline
|
6 |
+
from PIL import Image
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Load the pipeline (auto-detects CUDA if available)
|
11 |
+
device = 0 if torch.cuda.is_available() else -1
|
12 |
+
pipe = pipeline("image-classification", model="prithivMLmods/Deep-Fake-Detector-v2-Model", device=device)
|
13 |
+
|
14 |
+
def classify_image(image=None, url=None):
|
15 |
+
if image is None and not url:
|
16 |
+
return "Skill issue: You gave me nothing to work with."
|
17 |
+
|
18 |
+
try:
|
19 |
+
if url:
|
20 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
21 |
+
elif image:
|
22 |
+
image = Image.fromarray(image).convert("RGB")
|
23 |
+
except Exception as e:
|
24 |
+
return f"Bro... that ain't an image: {str(e)}"
|
25 |
+
|
26 |
+
result = pipe(image)
|
27 |
+
return {entry["label"]: round(entry["score"], 3) for entry in result}
|
28 |
+
|
29 |
+
# Set up the Gradio interface
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
gr.Markdown("# 🔍 DeepFake Detector\nUpload an image or paste a URL. Let's see if you're being catfished.")
|
32 |
+
|
33 |
+
with gr.Row():
|
34 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
35 |
+
url_input = gr.Textbox(label="Or Enter Image URL")
|
36 |
+
|
37 |
+
submit_btn = gr.Button("🚨 Detect")
|
38 |
+
|
39 |
+
output = gr.Label(num_top_classes=2)
|
40 |
+
|
41 |
+
submit_btn.click(fn=classify_image, inputs=[image_input, url_input], outputs=output)
|
42 |
+
|
43 |
+
# Launch the app
|
44 |
+
demo.launch()
|