prakhardoneria commited on
Commit
0b53922
·
verified ·
1 Parent(s): 0aef639

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # First, make sure you've installed required packages
2
+ # !pip install -U gradio transformers torch torchvision
3
+
4
+ import gradio as gr
5
+ from transformers import pipeline
6
+ from PIL import Image
7
+ import requests
8
+ import torch
9
+
10
+ # Load the pipeline (auto-detects CUDA if available)
11
+ device = 0 if torch.cuda.is_available() else -1
12
+ pipe = pipeline("image-classification", model="prithivMLmods/Deep-Fake-Detector-v2-Model", device=device)
13
+
14
+ def classify_image(image=None, url=None):
15
+ if image is None and not url:
16
+ return "Skill issue: You gave me nothing to work with."
17
+
18
+ try:
19
+ if url:
20
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
21
+ elif image:
22
+ image = Image.fromarray(image).convert("RGB")
23
+ except Exception as e:
24
+ return f"Bro... that ain't an image: {str(e)}"
25
+
26
+ result = pipe(image)
27
+ return {entry["label"]: round(entry["score"], 3) for entry in result}
28
+
29
+ # Set up the Gradio interface
30
+ with gr.Blocks() as demo:
31
+ gr.Markdown("# 🔍 DeepFake Detector\nUpload an image or paste a URL. Let's see if you're being catfished.")
32
+
33
+ with gr.Row():
34
+ image_input = gr.Image(type="numpy", label="Upload Image")
35
+ url_input = gr.Textbox(label="Or Enter Image URL")
36
+
37
+ submit_btn = gr.Button("🚨 Detect")
38
+
39
+ output = gr.Label(num_top_classes=2)
40
+
41
+ submit_btn.click(fn=classify_image, inputs=[image_input, url_input], outputs=output)
42
+
43
+ # Launch the app
44
+ demo.launch()