Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import wikipedia
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Load YOLO model for tree detection
|
10 |
+
yolo_model = YOLO("yolov8n.pt")
|
11 |
+
|
12 |
+
# Load MiDaS depth model
|
13 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
14 |
+
midas.to("cpu").eval()
|
15 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small
|
16 |
+
|
17 |
+
def estimate_tree_height(image):
|
18 |
+
# Convert image to OpenCV format
|
19 |
+
image = np.array(image)
|
20 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
21 |
+
|
22 |
+
# Object Detection (Tree)
|
23 |
+
results = yolo_model(image_rgb)
|
24 |
+
boxes = results[0].boxes.xyxy.cpu().numpy() # Get bounding boxes
|
25 |
+
labels = results[0].boxes.cls.cpu().numpy()
|
26 |
+
|
27 |
+
tree_boxes = [box for box, label in zip(boxes, labels) if int(label) == 0] # class 0 usually means 'person/tree'
|
28 |
+
|
29 |
+
if not tree_boxes:
|
30 |
+
return "No tree detected", None, None
|
31 |
+
|
32 |
+
x1, y1, x2, y2 = tree_boxes[0]
|
33 |
+
tree_crop = image[int(y1):int(y2), int(x1):int(x2)]
|
34 |
+
|
35 |
+
# Depth estimation
|
36 |
+
input_tensor = midas_transforms(Image.fromarray(image_rgb)).to("cpu")
|
37 |
+
with torch.no_grad():
|
38 |
+
depth_map = midas(input_tensor.unsqueeze(0))[0]
|
39 |
+
depth_resized = torch.nn.functional.interpolate(
|
40 |
+
depth_map.unsqueeze(0),
|
41 |
+
size=image_rgb.shape[:2],
|
42 |
+
mode="bicubic",
|
43 |
+
align_corners=False
|
44 |
+
).squeeze().cpu().numpy()
|
45 |
+
|
46 |
+
avg_depth = np.mean(depth_resized[int(y1):int(y2), int(x1):int(x2)])
|
47 |
+
estimated_height_m = avg_depth * 1.8 # arbitrary scaling for demo
|
48 |
+
|
49 |
+
# Wikipedia summary (simulate species info)
|
50 |
+
try:
|
51 |
+
summary = wikipedia.summary("tree", sentences=2)
|
52 |
+
except Exception:
|
53 |
+
summary = "Tree species information not available."
|
54 |
+
|
55 |
+
return f"Estimated Tree Height: {estimated_height_m:.2f} meters", Image.fromarray(tree_crop), summary
|
56 |
+
|
57 |
+
# Gradio Interface
|
58 |
+
demo = gr.Interface(
|
59 |
+
fn=estimate_tree_height,
|
60 |
+
inputs=gr.Image(type="pil"),
|
61 |
+
outputs=[
|
62 |
+
gr.Textbox(label="Tree Height Estimate"),
|
63 |
+
gr.Image(label="Detected Tree"),
|
64 |
+
gr.Textbox(label="Tree Species Info")
|
65 |
+
],
|
66 |
+
title="🌳 Tree Measurement App",
|
67 |
+
description="Capture a tree image to estimate its height and get basic species info."
|
68 |
+
)
|
69 |
+
|
70 |
+
demo.launch()
|