import gradio as gr import torch import cv2 import numpy as np from PIL import Image from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification import wikipedia import folium import tempfile import os import logging import warnings warnings.filterwarnings("ignore") # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class TreeAnalyzer: def __init__(self): self.setup_models() def setup_models(self): """Initialize models optimized for HF Spaces""" logger.info("Loading models for HF Spaces...") # Load depth estimation model self.midas = None try: self.midas = torch.hub.load('intel-isl/MiDaS', 'MiDaS_small', trust_repo=True) self.midas.eval() self.midas_transforms = torch.hub.load('intel-isl/MiDaS', 'transforms', trust_repo=True) self.transform = self.midas_transforms.small_transform logger.info("βœ“ MiDaS loaded") except Exception as e: logger.error(f"MiDaS failed: {e}") # Load plant classification model self.plant_classifier = None models_to_try = [ "google/vit-base-patch16-224", "microsoft/resnet-50", "facebook/convnext-tiny-224" ] for model_name in models_to_try: try: self.plant_classifier = pipeline( "image-classification", model=model_name, return_top_k=10 ) logger.info(f"βœ“ Loaded classifier: {model_name}") break except Exception as e: logger.warning(f"Failed to load {model_name}: {e}") continue def estimate_tree_height(self, image): """Estimate tree height using depth estimation""" if self.midas is None: return "Height estimation not available (MiDaS model failed to load)" try: # Convert and resize image img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) h, w = img_cv.shape[:2] # Resize for memory efficiency if h > 384 or w > 384: scale = min(384/h, 384/w) new_h, new_w = int(h*scale), int(w*scale) img_cv = cv2.resize(img_cv, (new_w, new_h)) # Process with MiDaS input_batch = self.transform(img_cv) with torch.no_grad(): prediction = self.midas(input_batch) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=(img_cv.shape[0], img_cv.shape[1]), mode="bicubic", align_corners=False, ).squeeze() depth_map = prediction.cpu().numpy() # Simple height estimation h_img, w_img = depth_map.shape center_region = depth_map[h_img//4:3*h_img//4, w_img//4:3*w_img//4] if center_region.size > 0: depth_range = np.max(center_region) - np.min(center_region) height_ratio = center_region.shape[0] / h_img estimated_height = max(1.5, min(50.0, (depth_range * height_ratio * 30))) return f"Estimated height: {estimated_height:.1f} meters\n(Approximate estimate based on image depth analysis)" else: return "Could not estimate height from this image" except Exception as e: logger.error(f"Height estimation error: {e}") return f"Height estimation failed: {str(e)}" def identify_tree_species(self, image): """Identify tree species with better filtering""" if self.plant_classifier is None: return "Species identification not available (classifier failed to load)", [] try: # Resize image for processing if image.size[0] > 224 or image.size[1] > 224: image = image.resize((224, 224), Image.Resampling.LANCZOS) # Get predictions predictions = self.plant_classifier(image) # Enhanced plant/tree keywords plant_keywords = [ # Trees 'tree', 'oak', 'pine', 'maple', 'birch', 'cedar', 'fir', 'palm', 'willow', 'cherry', 'apple', 'spruce', 'poplar', 'ash', 'elm', 'beech', 'sycamore', 'acacia', 'eucalyptus', 'magnolia', 'chestnut', 'walnut', 'hickory', 'cypress', 'juniper', 'redwood', 'bamboo', 'mahogany', 'teak', # Plants and botanical terms 'plant', 'leaf', 'leaves', 'branch', 'bark', 'forest', 'wood', 'botanical', 'flora', 'foliage', 'evergreen', 'deciduous', 'conifer', 'hardwood', 'softwood', 'timber', 'shrub', 'bush', 'vine', 'fern', 'moss', # Specific species indicators 'quercus', 'pinus', 'acer', 'betula', 'fagus', 'tilia', 'fraxinus', 'platanus', 'castanea', 'juglans', 'carya', 'ulmus', 'salix' ] # Process and score predictions species_candidates = [] for pred in predictions: label = pred['label'].lower() confidence = pred['score'] # Calculate plant relevance score plant_score = sum(1 for keyword in plant_keywords if keyword in label) is_plant_related = plant_score > 0 # Get Wikipedia info wiki_info = self.get_wikipedia_info(pred['label']) species_candidates.append({ 'species': pred['label'], 'confidence': confidence, 'plant_score': plant_score, 'is_plant_related': is_plant_related, 'wiki_info': wiki_info }) # Sort by plant relevance and confidence species_candidates.sort(key=lambda x: (x['plant_score'], x['confidence']), reverse=True) # Return top candidates final_results = species_candidates[:3] if any(result['is_plant_related'] for result in final_results): return "Species identification completed", final_results else: return "Possible species identified (may not be plants)", final_results except Exception as e: logger.error(f"Species identification error: {e}") return f"Species identification failed: {str(e)}", [] def get_wikipedia_info(self, species_name): """Get Wikipedia information with better error handling""" try: # Clean species name clean_name = species_name.split(',')[0].split('(')[0].strip() search_queries = [ clean_name, f"{clean_name} tree", f"{clean_name} plant", f"{clean_name} species" ] for query in search_queries: try: results = wikipedia.search(query, results=2) if results: for result in results: try: page = wikipedia.page(result, auto_suggest=False) summary = wikipedia.summary(result, sentences=2, auto_suggest=False) return { 'title': page.title, 'summary': summary, 'url': page.url } except: continue except: continue return { 'title': 'No information found', 'summary': f'Wikipedia information not available for {species_name}', 'url': None } except Exception as e: return { 'title': 'Error', 'summary': f'Could not retrieve information: {str(e)}', 'url': None } def analyze_tree(image, latitude, longitude): """Main analysis function""" if image is None: return "Please upload an image", "", "", "", "" try: analyzer = TreeAnalyzer() # Height estimation height_result = analyzer.estimate_tree_height(image) # Species identification species_status, species_info = analyzer.identify_tree_species(image) # Format species results species_text = "" if species_info: for i, info in enumerate(species_info, 1): species_text += f"## {i}. {info['species']}\n" species_text += f"**Confidence:** {info['confidence']:.3f}\n" species_text += f"**Plant-related:** {'Yes' if info['is_plant_related'] else 'Uncertain'}\n" wiki = info['wiki_info'] species_text += f"**Wikipedia:** {wiki['title']}\n" species_text += f"{wiki['summary']}\n" if wiki['url']: species_text += f"πŸ”— [Read more]({wiki['url']})\n" species_text += "\n---\n" else: species_text = "No species information could be determined from this image." # Location info location_result = "" map_html = "" if latitude is not None and longitude is not None: try: location_result = f"Coordinates: {latitude:.6f}, {longitude:.6f}" # Create map m = folium.Map(location=[latitude, longitude], zoom_start=15) folium.Marker( [latitude, longitude], popup=f"Tree Location
{latitude:.6f}, {longitude:.6f}", tooltip="Tree Location" ).add_to(m) # Save map map_file = tempfile.NamedTemporaryFile(delete=False, suffix='.html', mode='w') m.save(map_file.name) map_file.close() with open(map_file.name, 'r', encoding='utf-8') as f: map_html = f.read() os.unlink(map_file.name) except Exception as e: location_result = f"Error processing location: {str(e)}" map_html = "

Could not generate map

" else: location_result = "No GPS coordinates provided" map_html = "

No location data available

" return species_status, height_result, species_text, location_result, map_html except Exception as e: logger.error(f"Analysis failed: {e}") return f"Analysis failed: {str(e)}", "", "", "", "" # Gradio interface def create_interface(): """Create the Gradio interface""" with gr.Blocks(title="Tree Analyzer", theme=gr.themes.Soft()) as demo: gr.HTML("""

🌳 Tree Analyzer

Upload an image of a tree and optionally provide GPS coordinates for comprehensive analysis

""") with gr.Row(): with gr.Column(scale=1): image_input = gr.Image( type="pil", label="Upload Tree Image", height=400 ) with gr.Row(): lat_input = gr.Number( label="Latitude", placeholder="e.g., 40.7128", precision=6 ) lon_input = gr.Number( label="Longitude", placeholder="e.g., -74.0060", precision=6 ) analyze_btn = gr.Button("πŸ” Analyze Tree", variant="primary", size="lg") gr.HTML("""

πŸ“ How to get GPS coordinates:

""") with gr.Column(scale=2): with gr.Tab("πŸ“Š Analysis Results"): status_output = gr.Textbox( label="Analysis Status", interactive=False ) height_output = gr.Textbox( label="Height Estimation", interactive=False, lines=3 ) species_output = gr.Markdown( label="Species Identification", height=300 ) with gr.Tab("πŸ—ΊοΈ Location"): location_output = gr.Textbox( label="Location Information", interactive=False ) map_output = gr.HTML( label="Location Map", height=400 ) # Connect the analyze button analyze_btn.click( fn=analyze_tree, inputs=[image_input, lat_input, lon_input], outputs=[status_output, height_output, species_output, location_output, map_output] ) gr.HTML("""

Features:

πŸ” Species identification using AI models | πŸ“ Height estimation via depth analysis | πŸ—ΊοΈ Location mapping | πŸ“š Wikipedia integration

Note: This tool provides estimates and suggestions. For scientific purposes, consult with professional botanists or arborists.

""") return demo if __name__ == "__main__": # Create and launch the interface demo = create_interface() demo.launch( share=True, debug=True, show_error=True )