Spaces:
Runtime error
Runtime error
File size: 40,761 Bytes
d7dda8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 |
import os
import json
import logging
import tempfile
import re
from typing import Dict, Any, Optional, List, Tuple
from pathlib import Path
from dotenv import load_dotenv
from flask import Flask, request, jsonify, render_template, send_file
from flask_cors import CORS
import google.generativeai as genai
from groq import Groq
import pandas as pd
from datetime import datetime
import io
import cv2
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import img_to_array
from moviepy.editor import VideoFileClip
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
# Configure logger first before using it elsewhere
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log')
]
)
logger = logging.getLogger(__name__)
# Suppress TensorFlow warnings
tf.get_logger().setLevel('ERROR')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Load environment variables
load_dotenv()
# Configure Flask app
app = Flask(__name__)
app.config['TEMPLATES_AUTO_RELOAD'] = False
app.config['MAX_CONTENT_LENGTH'] = 500 * 1024 * 1024 # 500MB max file size
# Configure API keys with validation
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY environment variable not set")
raise ValueError("GROQ_API_KEY environment variable must be set")
if not GEMINI_API_KEY:
logger.error("GEMINI_API_KEY environment variable not set")
raise ValueError("GEMINI_API_KEY environment variable must be set")
# Initialize clients with proper configuration and error handling
try:
# Initialize Groq client with basic configuration
from groq._base_client import SyncHttpxClientWrapper
import httpx
# Create a simple httpx client
http_client = SyncHttpxClientWrapper(
base_url="https://api.groq.com/v1",
timeout=httpx.Timeout(60.0)
)
# Initialize Groq client
groq_client = Groq(
api_key=GROQ_API_KEY,
http_client=http_client
)
# Initialize Gemini client
genai.configure(api_key=GEMINI_API_KEY)
MODEL_NAME = "gemini-1.5-flash"
logger.info("API clients initialized successfully")
except Exception as e:
logger.error(f"Error initializing API clients: {str(e)}")
raise
# Emotion Detection Setup
MODEL_PATH = os.path.join(os.path.dirname(__file__), 'model.h5')
HAARCASCADE_PATH = os.path.join(os.path.dirname(__file__), 'haarcascade_frontalface_default.xml')
# Load models with optimized settings
try:
# Configure TensorFlow for optimal CPU performance
physical_devices = tf.config.list_physical_devices('CPU')
if physical_devices:
try:
# Limit memory growth to prevent OOM errors
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
# Not all devices support memory growth
pass
tf.config.threading.set_inter_op_parallelism_threads(4)
tf.config.threading.set_intra_op_parallelism_threads(4)
# Load emotion model with optimized settings
model = load_model(MODEL_PATH, compile=False)
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],
run_eagerly=False
)
# Load face cascade
face_cascade = cv2.CascadeClassifier(HAARCASCADE_PATH)
if face_cascade.empty():
raise Exception("Error: Haar Cascade file could not be loaded")
logger.info("Successfully loaded model and face cascade")
except Exception as e:
logger.error(f"Error loading model or face cascade: {str(e)}")
model = None
face_cascade = None
EMOTIONS = ['Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise']
# Video processing configuration
VIDEO_CHUNK_SIZE = 1024 * 1024 # 1MB chunks for video processing
MAX_VIDEO_DURATION = 120 # Maximum video duration in minutes
FRAME_SAMPLE_RATE = 5 # Process every 5th frame for long videos
def extract_json(text: str) -> Optional[str]:
"""Extract JSON from response text."""
try:
json_match = re.search(r'\{.*\}', text, re.DOTALL)
if json_match:
return json_match.group(0)
return None
except Exception as e:
logger.error(f"Error extracting JSON: {str(e)}")
return None
def extract_audio_from_video(video_path: str) -> Optional[str]:
"""Extract audio from video file with optimized processing."""
try:
temp_audio_path = video_path.replace('.mp4', '.mp3')
# Load video clip with optimized settings
video_clip = VideoFileClip(
video_path,
audio_buffersize=200000,
verbose=False,
audio_fps=44100
)
if video_clip.audio is None:
logger.warning("Video has no audio track")
return None
# Extract audio with optimized settings
video_clip.audio.write_audiofile(
temp_audio_path,
buffersize=2000,
verbose=False,
logger=None
)
video_clip.close()
logger.info(f"Successfully extracted audio to {temp_audio_path}")
return temp_audio_path
except Exception as e:
logger.error(f"Error extracting audio: {str(e)}")
return None
finally:
# Ensure video clip is closed even if an exception occurs
if 'video_clip' in locals() and video_clip is not None:
try:
video_clip.close()
except:
pass
def transcribe_audio(audio_path: str) -> Optional[str]:
"""Transcribe audio using Groq."""
if not audio_path or not os.path.exists(audio_path):
logger.error(f"Audio file not found at {audio_path}")
return None
try:
# Transcribe audio
with open(audio_path, "rb") as file:
transcription = groq_client.audio.transcriptions.create(
file=(audio_path, file.read()),
model="whisper-large-v3-turbo",
response_format="json",
language="en",
temperature=0.0
)
logger.info(f"Transcription successful: {transcription.text[:100]}...")
return transcription.text
except Exception as e:
logger.error(f"Transcription error: {str(e)}")
return None
def process_video_chunk(frame_chunk: List[np.ndarray], start_frame: int) -> Dict[str, Any]:
"""Process a chunk of video frames efficiently."""
results = {
'emotion_counts': {emotion: 0 for emotion in EMOTIONS},
'faces_detected': 0,
'frames_with_faces': 0,
'frames_processed': 0
}
for frame_idx, frame in enumerate(frame_chunk):
try:
# Skip empty frames
if frame is None or frame.size == 0:
continue
# Resize frame for faster processing if too large
height, width = frame.shape[:2]
if width > 1280:
scale = 1280 / width
frame = cv2.resize(frame, None, fx=scale, fy=scale)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
results['frames_processed'] += 1
if len(faces) > 0:
results['frames_with_faces'] += 1
results['faces_detected'] += len(faces)
for (x, y, w, h) in faces:
# Add boundary checks
if y >= gray.shape[0] or x >= gray.shape[1] or y+h > gray.shape[0] or x+w > gray.shape[1]:
continue
roi = gray[y:y + h, x:x + w]
roi = cv2.resize(roi, (48, 48), interpolation=cv2.INTER_AREA)
if np.sum(roi) == 0:
continue
roi = roi.astype("float32") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
with tf.device('/CPU:0'):
preds = model.predict(roi, verbose=0)[0]
label = EMOTIONS[np.argmax(preds)]
results['emotion_counts'][label] += 1
except Exception as e:
logger.error(f"Error processing frame {start_frame + frame_idx}: {str(e)}")
continue
return results
def analyze_video_emotions(video_path: str) -> Dict[str, Any]:
"""Analyze emotions in a video with optimized processing for large files."""
if model is None or face_cascade is None:
logger.error("Model or face detector not properly loaded")
return {
'emotion_counts': {},
'emotion_percentages': {},
'total_faces': 0,
'frames_processed': 0,
'frames_with_faces': 0,
'error': 'Models not properly loaded'
}
cap = None
try:
# Open video and get properties
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Failed to open video file")
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS)) or 30 # Default to 30 if fps is 0
duration = total_frames / max(fps, 1) / 60 # Duration in minutes, prevent division by zero
# Check video duration
if duration > MAX_VIDEO_DURATION:
raise Exception(f"Video duration exceeds maximum limit of {MAX_VIDEO_DURATION} minutes")
# Initialize results
combined_results = {
'emotion_counts': {emotion: 0 for emotion in EMOTIONS},
'total_faces': 0,
'frames_processed': 0,
'frames_with_faces': 0,
'processing_stats': {
'total_video_frames': total_frames,
'video_fps': fps,
'video_duration_minutes': round(duration, 2)
}
}
# Process video in chunks using ThreadPoolExecutor
frame_buffer = []
frame_count = 0
chunk_size = 30 # Process 30 frames per chunk
with ThreadPoolExecutor(max_workers=min(4, os.cpu_count() or 4)) as executor:
future_to_chunk = {}
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % FRAME_SAMPLE_RATE != 0:
continue
frame_buffer.append(frame)
if len(frame_buffer) >= chunk_size:
# Submit chunk for processing
future = executor.submit(
process_video_chunk,
frame_buffer.copy(),
frame_count - len(frame_buffer)
)
future_to_chunk[future] = len(frame_buffer)
frame_buffer = []
# Process remaining frames
if frame_buffer:
future = executor.submit(
process_video_chunk,
frame_buffer,
frame_count - len(frame_buffer)
)
future_to_chunk[future] = len(frame_buffer)
# Collect results
for future in as_completed(future_to_chunk):
try:
chunk_results = future.result()
# Combine results
for emotion, count in chunk_results['emotion_counts'].items():
combined_results['emotion_counts'][emotion] += count
combined_results['total_faces'] += chunk_results['faces_detected']
combined_results['frames_processed'] += chunk_results['frames_processed']
combined_results['frames_with_faces'] += chunk_results['frames_with_faces']
except Exception as e:
logger.error(f"Error processing chunk: {str(e)}")
# Calculate percentages
total_emotions = sum(combined_results['emotion_counts'].values())
combined_results['emotion_percentages'] = {
emotion: round((count / max(total_emotions, 1) * 100), 2)
for emotion, count in combined_results['emotion_counts'].items()
}
# Add processing statistics
combined_results['processing_stats'].update({
'frames_sampled': combined_results['frames_processed'],
'sampling_rate': f'1/{FRAME_SAMPLE_RATE}',
'processing_complete': True
})
return combined_results
except Exception as e:
logger.error(f"Error in emotion analysis: {str(e)}")
return {
'error': str(e),
'emotion_counts': {emotion: 0 for emotion in EMOTIONS},
'emotion_percentages': {emotion: 0 for emotion in EMOTIONS},
'total_faces': 0,
'frames_processed': 0,
'frames_with_faces': 0,
'processing_stats': {
'error_occurred': True,
'error_message': str(e)
}
}
finally:
if cap is not None:
cap.release()
def analyze_interview(conversation_text: str, role_applied: Optional[str] = None, tech_skills: Optional[List[str]] = None) -> Dict[str, Any]:
"""Analyze technical interview transcript."""
if not conversation_text or len(conversation_text.strip()) < 50:
logger.warning("Transcript too short for meaningful analysis")
return create_default_assessment()
try:
model = genai.GenerativeModel(MODEL_NAME)
skills_context = ""
if tech_skills and len(tech_skills) > 0:
skills_context = f"Focus on evaluating these specific technical skills: {', '.join(tech_skills)}."
role_context = ""
if role_applied:
role_context = f"The candidate is being interviewed for the role of {role_applied}."
prompt = f"""
Based on the following technical interview transcript, analyze the candidate's responses and provide a structured assessment in *valid JSON format*.
{role_context}
{skills_context}
*JSON Format:*
{{
"candidate_assessment": {{
"technical_knowledge": {{
"score": 0, // Score from 1-10
"strengths": [],
"areas_for_improvement": []
}},
"problem_solving": {{
"score": 0, // Score from 1-10
"strengths": [],
"areas_for_improvement": []
}},
"communication": {{
"score": 0, // Score from 1-10
"strengths": [],
"areas_for_improvement": []
}}
}},
"question_analysis": [
{{
"question": "",
"answer_quality": "", // Excellent, Good, Average, Poor
"feedback": ""
}}
],
"overall_recommendation": "", // Hire, Strong Consider, Consider, Do Not Recommend
"overall_feedback": ""
}}
*Interview Transcript:*
{conversation_text}
*Output Strictly JSON. Do NOT add explanations or extra text.*
"""
# Set timeout and retry parameters
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
]
generation_config = {
"temperature": 0.2,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
}
# Try to generate response with retry mechanism
max_retries = 3
for attempt in range(max_retries):
try:
response = model.generate_content(
prompt,
safety_settings=safety_settings,
generation_config=generation_config
)
raw_response = response.text
logger.info(f"Raw Gemini Response: {raw_response[:100]}...")
break
except Exception as e:
logger.warning(f"Attempt {attempt+1} failed: {str(e)}")
if attempt == max_retries - 1: # Last attempt
logger.error(f"All {max_retries} attempts failed")
return create_default_assessment()
json_text = extract_json(raw_response)
if json_text:
try:
assessment = json.loads(json_text)
# Ensure the response has all required fields
required_fields = {
'candidate_assessment': {
'technical_knowledge': ['score', 'strengths', 'areas_for_improvement'],
'problem_solving': ['score', 'strengths', 'areas_for_improvement'],
'communication': ['score', 'strengths', 'areas_for_improvement']
},
'question_analysis': ['question', 'answer_quality', 'feedback'],
'overall_recommendation': None,
'overall_feedback': None
}
# Validate and set defaults if needed
if 'candidate_assessment' not in assessment:
assessment['candidate_assessment'] = {}
for category in ['technical_knowledge', 'problem_solving', 'communication']:
if category not in assessment['candidate_assessment']:
assessment['candidate_assessment'][category] = {
'score': 5,
'strengths': ['Not enough information to assess.'],
'areas_for_improvement': ['Not enough information to assess.']
}
else:
cat_data = assessment['candidate_assessment'][category]
for field in required_fields['candidate_assessment'][category]:
if field not in cat_data:
if field == 'score':
cat_data[field] = 5
else:
cat_data[field] = ['Not enough information to assess.']
if 'question_analysis' not in assessment or not assessment['question_analysis']:
assessment['question_analysis'] = [{
'question': 'General Interview',
'answer_quality': 'Average',
'feedback': 'Not enough specific questions to analyze.'
}]
else:
for qa in assessment['question_analysis']:
for field in required_fields['question_analysis']:
if field not in qa:
qa[field] = 'Not available'
if 'overall_recommendation' not in assessment or not assessment['overall_recommendation']:
assessment['overall_recommendation'] = 'Consider'
if 'overall_feedback' not in assessment or not assessment['overall_feedback']:
assessment['overall_feedback'] = 'Not enough information to provide detailed feedback.'
return assessment
except json.JSONDecodeError as e:
logger.error(f"Error parsing JSON response: {str(e)}")
return create_default_assessment()
else:
logger.error("No valid JSON found in response")
return create_default_assessment()
except Exception as e:
logger.error(f"Interview analysis error: {str(e)}")
return create_default_assessment()
def create_default_assessment() -> Dict[str, Any]:
"""Create a default assessment when analysis fails."""
return {
"candidate_assessment": {
"technical_knowledge": {
"score": 5,
"strengths": ["Unable to assess strengths from the provided transcript."],
"areas_for_improvement": ["Unable to assess areas for improvement from the provided transcript."]
},
"problem_solving": {
"score": 5,
"strengths": ["Unable to assess strengths from the provided transcript."],
"areas_for_improvement": ["Unable to assess areas for improvement from the provided transcript."]
},
"communication": {
"score": 5,
"strengths": ["Unable to assess strengths from the provided transcript."],
"areas_for_improvement": ["Unable to assess areas for improvement from the provided transcript."]
}
},
"question_analysis": [{
"question": "General Interview",
"answer_quality": "Average",
"feedback": "Unable to assess specific questions from the transcript."
}],
"overall_recommendation": "Consider",
"overall_feedback": "Unable to provide a detailed assessment based on the provided transcript."
}
def process_video_and_audio_parallel(video_path: str, role_applied: str = None, tech_skills: list = None) -> Tuple[Dict[str, Any], str, Dict[str, Any]]:
"""Process video and audio in parallel with optimized handling."""
audio_path = None
emotion_results = None
transcript = None
interview_assessment = None
try:
with ThreadPoolExecutor(max_workers=min(3, os.cpu_count() or 2)) as executor:
# Submit emotions analysis task
emotion_future = executor.submit(analyze_video_emotions, video_path)
# Submit audio extraction task
audio_future = executor.submit(extract_audio_from_video, video_path)
# Wait for audio extraction to complete with timeout
try:
audio_path = audio_future.result(timeout=120) # 2 minutes timeout
except concurrent.futures.TimeoutError:
logger.error("Audio extraction timeout exceeded")
audio_path = None
# Continue with transcription if audio was extracted
transcript_future = None
if audio_path:
transcript_future = executor.submit(transcribe_audio, audio_path)
# Wait for emotion analysis with timeout
try:
emotion_results = emotion_future.result(timeout=300) # 5 minutes timeout
except concurrent.futures.TimeoutError:
logger.error("Emotion analysis timeout exceeded")
emotion_results = {
'error': 'Processing timeout exceeded',
'emotion_counts': {emotion: 0 for emotion in EMOTIONS},
'emotion_percentages': {emotion: 0 for emotion in EMOTIONS},
'total_faces': 0,
'frames_processed': 0,
'frames_with_faces': 0
}
# Wait for transcription with timeout
if transcript_future:
try:
transcript = transcript_future.result(timeout=300) # 5 minutes timeout
except concurrent.futures.TimeoutError:
logger.error("Transcription timeout exceeded")
transcript = "Transcription failed due to timeout."
else:
transcript = "Audio extraction failed, no transcription available."
# Analyze interview content if transcript is available
if transcript and len(transcript) > 50:
interview_assessment = analyze_interview(transcript, role_applied, tech_skills)
else:
interview_assessment = create_default_assessment()
# Clean up audio file
if audio_path and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except Exception as e:
logger.warning(f"Error cleaning up audio file: {str(e)}")
return emotion_results, transcript, interview_assessment
except Exception as e:
logger.error(f"Error in parallel processing: {str(e)}")
# Create default results if any component failed
if not emotion_results:
emotion_results = {
'error': str(e),
'emotion_counts': {emotion: 0 for emotion in EMOTIONS},
'emotion_percentages': {emotion: 0 for emotion in EMOTIONS},
'total_faces': 0,
'frames_processed': 0,
'frames_with_faces': 0
}
if not transcript:
transcript = f"Error processing audio: {str(e)}"
if not interview_assessment:
interview_assessment = create_default_assessment()
# Clean up audio file if it exists
if audio_path and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except:
pass
return emotion_results, transcript, interview_assessment
@app.route('/')
def index():
"""Render the main page."""
return render_template('index.html')
@app.route('/test', methods=['GET'])
def test_endpoint():
"""Test endpoint to verify server is running."""
return jsonify({"status": "ok", "message": "Server is running"}), 200
@app.route("/analyze_interview", methods=["POST", "OPTIONS"])
def analyze_interview_route():
"""Main route for comprehensive interview analysis."""
# Add CORS headers for preflight requests
if request.method == 'OPTIONS':
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'POST, OPTIONS',
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '86400' # 24 hours
}
return ('', 204, headers)
try:
logger.info("Received analyze_interview request")
# Check for required file
if 'video' not in request.files:
logger.error("No video file in request")
return jsonify({"error": "Video file is required"}), 400
video_file = request.files['video']
if not video_file:
logger.error("Empty video file")
return jsonify({"error": "Empty video file"}), 400
# Get additional form data
role_applied = request.form.get('role_applied', '')
tech_skills = request.form.get('tech_skills', '')
candidate_name = request.form.get('candidate_name', 'Candidate')
tech_skills_list = [skill.strip() for skill in tech_skills.split(',')] if tech_skills else []
# Create temporary video file
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as video_temp:
video_file.save(video_temp.name)
video_temp_path = video_temp.name
logger.info(f"Video saved to temporary file: {video_temp_path}")
except Exception as e:
logger.error(f"Error saving video file: {str(e)}")
return jsonify({"error": f"Failed to save video file: {str(e)}"}), 500
# Process video and audio in parallel
try:
emotion_analysis, transcript, interview_assessment = process_video_and_audio_parallel(
video_temp_path, role_applied, tech_skills_list
)
except Exception as e:
logger.error(f"Error during parallel processing: {str(e)}")
return jsonify({"error": str(e)}), 500
# Combine results
combined_results = {
"candidate_assessment": interview_assessment["candidate_assessment"],
"question_analysis": interview_assessment["question_analysis"],
"overall_recommendation": interview_assessment["overall_recommendation"],
"overall_feedback": interview_assessment["overall_feedback"],
"transcription": transcript,
"candidate_name": candidate_name,
"role_applied": role_applied,
"interview_date": datetime.now().strftime('%Y-%m-%d'),
"emotion_analysis": emotion_analysis
}
logger.info("Combined results created successfully")
logger.debug(f"Response data: {json.dumps(combined_results, indent=2)}")
# Clean up temporary video file
try:
os.unlink(video_temp_path)
logger.info("Temporary files cleaned up")
except Exception as e:
logger.warning(f"Error cleaning up temporary files: {str(e)}")
# Add CORS headers to response
response = jsonify(combined_results)
response.headers.add('Access-Control-Allow-Origin', '*')
return response
except Exception as e:
logger.error(f"Error in analyze_interview_route: {str(e)}")
return jsonify({"error": str(e)}), 500
@app.route('/download_assessment', methods=['POST', 'OPTIONS'])
def download_assessment():
"""Download comprehensive assessment report."""
# Add CORS headers for preflight requests
if request.method == 'OPTIONS':
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'POST, OPTIONS',
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '86400' # 24 hours
}
return ('', 204, headers)
try:
data = request.json
if not data:
return jsonify({"error": "No data provided"}), 400
# Create Excel writer object
output = io.BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
workbook = writer.book
# Define formats
header_format = workbook.add_format({
'bold': True,
'bg_color': '#CCCCCC',
'border': 1
})
cell_format = workbook.add_format({
'border': 1
})
# Summary Sheet
summary_data = {
'Metric': [
'Technical Knowledge',
'Problem Solving',
'Communication',
'Overall Recommendation',
'Total Faces Detected'
],
'Score/Rating': [
f"{data['candidate_assessment']['technical_knowledge']['score']}/10",
f"{data['candidate_assessment']['problem_solving']['score']}/10",
f"{data['candidate_assessment']['communication']['score']}/10",
data['overall_recommendation'],
data['emotion_analysis'].get('total_faces', 0)
]
}
summary_df = pd.DataFrame(summary_data)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
# Format Summary sheet
summary_sheet = writer.sheets['Summary']
summary_sheet.set_column('A:A', 25)
summary_sheet.set_column('B:B', 20)
# Apply formats to Summary sheet
for col_num, value in enumerate(summary_df.columns.values):
summary_sheet.write(0, col_num, value, header_format)
for row_num in range(len(summary_df)):
for col_num in range(len(summary_df.columns)):
summary_sheet.write(row_num + 1, col_num, summary_df.iloc[row_num, col_num], cell_format)
# Technical Assessment Sheet
tech_data = []
# Add technical knowledge
tech_data.append(['Technical Knowledge', f"{data['candidate_assessment']['technical_knowledge']['score']}/10", ''])
tech_data.append(['Strengths', '', ''])
for strength in data['candidate_assessment']['technical_knowledge']['strengths']:
tech_data.append(['', '', strength])
tech_data.append(['Areas for Improvement', '', ''])
for area in data['candidate_assessment']['technical_knowledge']['areas_for_improvement']:
tech_data.append(['', '', area])
# Add problem solving
tech_data.append(['Problem Solving', f"{data['candidate_assessment']['problem_solving']['score']}/10", ''])
tech_data.append(['Strengths', '', ''])
for strength in data['candidate_assessment']['problem_solving']['strengths']:
tech_data.append(['', '', strength])
tech_data.append(['Areas for Improvement', '', ''])
for area in data['candidate_assessment']['problem_solving']['areas_for_improvement']:
tech_data.append(['', '', area])
# Add communication
tech_data.append(['Communication', f"{data['candidate_assessment']['communication']['score']}/10", ''])
tech_data.append(['Strengths', '', ''])
for strength in data['candidate_assessment']['communication']['strengths']:
tech_data.append(['', '', strength])
tech_data.append(['Areas for Improvement', '', ''])
for area in data['candidate_assessment']['communication']['areas_for_improvement']:
tech_data.append(['', '', area])
# Create Technical Assessment dataframe
tech_df = pd.DataFrame(tech_data, columns=['Category', 'Score', 'Details'])
tech_df.to_excel(writer, sheet_name='Technical Assessment', index=False)
# Format Technical Assessment sheet
tech_sheet = writer.sheets['Technical Assessment']
tech_sheet.set_column('A:A', 25)
tech_sheet.set_column('B:B', 15)
tech_sheet.set_column('C:C', 60)
# Apply formats to Technical Assessment sheet
for col_num, value in enumerate(tech_df.columns.values):
tech_sheet.write(0, col_num, value, header_format)
# Question Analysis Sheet
question_data = []
for qa in data['question_analysis']:
question_data.append([
qa['question'],
qa['answer_quality'],
qa['feedback']
])
question_df = pd.DataFrame(question_data, columns=['Question', 'Answer Quality', 'Feedback'])
question_df.to_excel(writer, sheet_name='Question Analysis', index=False)
# Format Question Analysis sheet
qa_sheet = writer.sheets['Question Analysis']
qa_sheet.set_column('A:A', 40)
qa_sheet.set_column('B:B', 15)
qa_sheet.set_column('C:C', 60)
# Apply formats to Question Analysis sheet
for col_num, value in enumerate(question_df.columns.values):
qa_sheet.write(0, col_num, value, header_format)
# Emotion Analysis Sheet
if 'emotion_analysis' in data and 'emotion_percentages' in data['emotion_analysis']:
emotion_data = {
'Emotion': list(data['emotion_analysis']['emotion_percentages'].keys()),
'Percentage': list(data['emotion_analysis']['emotion_percentages'].values()),
'Count': [data['emotion_analysis']['emotion_counts'].get(emotion, 0)
for emotion in data['emotion_analysis']['emotion_percentages'].keys()]
}
emotion_df = pd.DataFrame(emotion_data)
emotion_df.to_excel(writer, sheet_name='Emotion Analysis', index=False)
# Format Emotion Analysis sheet
emotion_sheet = writer.sheets['Emotion Analysis']
emotion_sheet.set_column('A:A', 15)
emotion_sheet.set_column('B:B', 15)
emotion_sheet.set_column('C:C', 15)
# Apply formats to Emotion Analysis sheet
for col_num, value in enumerate(emotion_df.columns.values):
emotion_sheet.write(0, col_num, value, header_format)
# Add a chart
chart = workbook.add_chart({'type': 'pie'})
chart.add_series({
'name': 'Emotions',
'categories': ['Emotion Analysis', 1, 0, len(emotion_df), 0],
'values': ['Emotion Analysis', 1, 1, len(emotion_df), 1],
'data_labels': {'percentage': True}
})
chart.set_title({'name': 'Emotion Distribution'})
chart.set_style(10)
emotion_sheet.insert_chart('E2', chart, {'x_scale': 1.5, 'y_scale': 1.5})
# Transcript Sheet
if 'transcription' in data:
transcript_data = {'Transcript': [data['transcription']]}
transcript_df = pd.DataFrame(transcript_data)
transcript_df.to_excel(writer, sheet_name='Transcript', index=False)
# Format Transcript sheet
transcript_sheet = writer.sheets['Transcript']
transcript_sheet.set_column('A:A', 100)
# Apply formats to Transcript sheet
transcript_sheet.write(0, 0, 'Transcript', header_format)
# Overall Feedback Sheet
overall_data = {'Overall Feedback': [data['overall_feedback']]}
overall_df = pd.DataFrame(overall_data)
overall_df.to_excel(writer, sheet_name='Overall Feedback', index=False)
# Format Overall Feedback sheet
overall_sheet = writer.sheets['Overall Feedback']
overall_sheet.set_column('A:A', 100)
# Apply formats to Overall Feedback sheet
overall_sheet.write(0, 0, 'Overall Feedback', header_format)
# Prepare the output file for download
output.seek(0)
candidate_name = data.get('candidate_name', 'Candidate').replace(' ', '_')
role_applied = data.get('role_applied', 'Role').replace(' ', '_')
filename = f"{candidate_name}_{role_applied}_Assessment.xlsx"
# Create response with appropriate headers
response = send_file(
output,
mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
as_attachment=True,
download_name=filename
)
# Add CORS headers
response.headers.add('Access-Control-Allow-Origin', '*')
return response
except Exception as e:
logger.error(f"Error generating assessment report: {str(e)}")
return jsonify({"error": f"Failed to generate assessment report: {str(e)}"}), 500
if __name__ == "__main__":
# Setup Flask app with proper settings for production
PORT = int(os.environ.get("PORT", 5000))
app.run(host="0.0.0.0", port=PORT, debug=False, threaded=True) |