File size: 24,481 Bytes
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
"""
Main Pipeline Orchestrator for Multilingual Audio Intelligence System

This module provides the complete end-to-end pipeline orchestration,
integrating audio preprocessing, speaker diarization, speech recognition,
neural machine translation, and output formatting into a unified system.

Key Features:
- Complete end-to-end pipeline execution
- Performance monitoring and benchmarking
- Robust error handling and recovery
- Progress tracking for long operations
- Multiple output format generation
- Command-line interface for batch processing
- Integration with all system modules

Usage:
    python main.py input_audio.wav --output-dir results/
    python main.py audio.mp3 --format json --translate-to en
    python main.py --benchmark test_audio/ --verbose

Dependencies: All src modules, argparse, logging
"""

import os
import sys
import logging
import argparse
import time
from pathlib import Path
from typing import Dict, List, Optional, Any
import json

# Add src directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'src'))

# Import all our modules
from audio_processor import AudioProcessor
from speaker_diarizer import SpeakerDiarizer, SpeakerSegment
from speech_recognizer import SpeechRecognizer, TranscriptionSegment
from translator import NeuralTranslator, TranslationResult
from output_formatter import OutputFormatter, ProcessedSegment
from utils import (
    performance_monitor, ProgressTracker, validate_audio_file,
    get_system_info, format_duration, ensure_directory, get_file_info,
    safe_filename
)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)


class AudioIntelligencePipeline:
    """
    Complete multilingual audio intelligence pipeline.
    
    Orchestrates the entire workflow from raw audio input to structured,
    multilingual output with speaker attribution and translations.
    """
    
    def __init__(self,
                 whisper_model_size: str = "small",
                 target_language: str = "en",
                 device: Optional[str] = None,
                 hf_token: Optional[str] = None,
                 output_dir: Optional[str] = None):
        """
        Initialize the complete audio intelligence pipeline.
        
        Args:
            whisper_model_size (str): Whisper model size for ASR
            target_language (str): Target language for translation
            device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
            hf_token (str, optional): Hugging Face token for gated models
            output_dir (str, optional): Directory for output files
        """
        self.whisper_model_size = whisper_model_size
        self.target_language = target_language
        self.device = device
        self.hf_token = hf_token
        self.output_dir = Path(output_dir) if output_dir else Path("./results")
        
        # Ensure output directory exists
        ensure_directory(self.output_dir)
        
        # Initialize pipeline components
        self.audio_processor = None
        self.speaker_diarizer = None
        self.speech_recognizer = None
        self.translator = None
        self.output_formatter = None
        
        # Performance tracking
        self.total_processing_time = 0
        self.component_times = {}
        
        logger.info(f"Initialized AudioIntelligencePipeline:")
        logger.info(f"  - Whisper model: {whisper_model_size}")
        logger.info(f"  - Target language: {target_language}")
        logger.info(f"  - Device: {device or 'auto'}")
        logger.info(f"  - Output directory: {self.output_dir}")
    
    def _initialize_components(self):
        """Lazy initialization of pipeline components."""
        if self.audio_processor is None:
            logger.info("Initializing AudioProcessor...")
            self.audio_processor = AudioProcessor()
        
        if self.speaker_diarizer is None:
            logger.info("Initializing SpeakerDiarizer...")
            self.speaker_diarizer = SpeakerDiarizer(
                hf_token=self.hf_token,
                device=self.device
            )
        
        if self.speech_recognizer is None:
            logger.info("Initializing SpeechRecognizer...")
            self.speech_recognizer = SpeechRecognizer(
                model_size=self.whisper_model_size,
                device=self.device
            )
        
        if self.translator is None:
            logger.info("Initializing NeuralTranslator...")
            self.translator = NeuralTranslator(
                target_language=self.target_language,
                device=self.device
            )
        
        if self.output_formatter is None:
            self.output_formatter = OutputFormatter()
    
    def process_audio(self, 
                     audio_input: str,
                     save_outputs: bool = True,
                     output_formats: List[str] = None) -> Dict[str, Any]:
        """
        Process audio file through complete pipeline.
        
        Args:
            audio_input (str): Path to input audio file
            save_outputs (bool): Whether to save outputs to files
            output_formats (List[str], optional): Formats to generate
            
        Returns:
            Dict[str, Any]: Complete processing results and metadata
        """
        start_time = time.time()
        audio_path = Path(audio_input)
        
        if output_formats is None:
            output_formats = ['json', 'srt', 'text', 'summary']
        
        logger.info(f"Starting audio processing pipeline for: {audio_path.name}")
        
        # Validate input file
        validation = validate_audio_file(audio_path)
        if not validation['valid']:
            raise ValueError(f"Invalid audio file: {validation['error']}")
        
        # Initialize components
        self._initialize_components()
        
        try:
            # Create progress tracker
            progress = ProgressTracker(5, f"Processing {audio_path.name}")
            
            # Step 1: Audio Preprocessing
            progress.update()
            logger.info("Step 1/5: Audio preprocessing...")
            with performance_monitor("audio_preprocessing") as metrics:
                processed_audio, sample_rate = self.audio_processor.process_audio(str(audio_path))
                audio_metadata = self.audio_processor.get_audio_info(str(audio_path))
            
            self.component_times['audio_preprocessing'] = metrics.duration
            logger.info(f"Audio preprocessed: {processed_audio.shape}, {sample_rate}Hz")
            
            # Step 2: Speaker Diarization
            progress.update()
            logger.info("Step 2/5: Speaker diarization...")
            with performance_monitor("speaker_diarization") as metrics:
                speaker_segments = self.speaker_diarizer.diarize(processed_audio, sample_rate)
            
            self.component_times['speaker_diarization'] = metrics.duration
            logger.info(f"Identified {len(set(seg.speaker_id for seg in speaker_segments))} speakers "
                       f"in {len(speaker_segments)} segments")
            
            # Step 3: Speech Recognition
            progress.update()
            logger.info("Step 3/5: Speech recognition...")
            with performance_monitor("speech_recognition") as metrics:
                # Convert speaker segments to format expected by speech recognizer
                speaker_tuples = [(seg.start_time, seg.end_time, seg.speaker_id) 
                                for seg in speaker_segments]
                transcription_segments = self.speech_recognizer.transcribe_segments(
                    processed_audio, sample_rate, speaker_tuples, word_timestamps=True
                )
            
            self.component_times['speech_recognition'] = metrics.duration
            languages_detected = set(seg.language for seg in transcription_segments)
            logger.info(f"Transcribed {len(transcription_segments)} segments, "
                       f"languages: {', '.join(languages_detected)}")
            
            # Step 4: Neural Machine Translation
            progress.update()
            logger.info("Step 4/5: Neural machine translation...")
            with performance_monitor("translation") as metrics:
                translation_results = []
                
                # Group by language for efficient batch translation
                language_groups = {}
                for seg in transcription_segments:
                    if seg.language not in language_groups:
                        language_groups[seg.language] = []
                    language_groups[seg.language].append(seg)
                
                # Translate each language group
                for lang, segments in language_groups.items():
                    if lang != self.target_language:
                        texts = [seg.text for seg in segments]
                        batch_results = self.translator.translate_batch(
                            texts, [lang] * len(texts), self.target_language
                        )
                        translation_results.extend(batch_results)
                    else:
                        # Create identity translations for target language
                        for seg in segments:
                            translation_results.append(TranslationResult(
                                original_text=seg.text,
                                translated_text=seg.text,
                                source_language=lang,
                                target_language=self.target_language,
                                confidence=1.0,
                                model_used="identity"
                            ))
            
            self.component_times['translation'] = metrics.duration
            logger.info(f"Translated {len(translation_results)} text segments")
            
            # Step 5: Output Formatting
            progress.update()
            logger.info("Step 5/5: Output formatting...")
            with performance_monitor("output_formatting") as metrics:
                # Combine all results into ProcessedSegment objects
                processed_segments = self._combine_results(
                    speaker_segments, transcription_segments, translation_results
                )
                
                # Generate outputs
                self.output_formatter = OutputFormatter(audio_path.name)
                all_outputs = self.output_formatter.format_all_outputs(
                    processed_segments, 
                    audio_metadata,
                    self.component_times
                )
            
            self.component_times['output_formatting'] = metrics.duration
            progress.finish()
            
            # Calculate total processing time
            self.total_processing_time = time.time() - start_time
            
            # Save outputs if requested
            if save_outputs:
                saved_files = self._save_outputs(all_outputs, audio_path, output_formats)
            else:
                saved_files = {}
            
            # Prepare final results
            results = {
                'success': True,
                'input_file': str(audio_path),
                'audio_metadata': audio_metadata,
                'processing_stats': {
                    'total_time': self.total_processing_time,
                    'component_times': self.component_times,
                    'num_speakers': len(set(seg.speaker_id for seg in processed_segments)),
                    'num_segments': len(processed_segments),
                    'languages_detected': list(languages_detected),
                    'total_speech_duration': sum(seg.duration for seg in processed_segments)
                },
                'outputs': all_outputs,
                'saved_files': saved_files,
                'processed_segments': processed_segments
            }
            
            logger.info(f"Pipeline completed successfully in {format_duration(self.total_processing_time)}")
            return results
            
        except Exception as e:
            logger.error(f"Pipeline failed: {str(e)}")
            raise
    
    def _combine_results(self,
                        speaker_segments: List[SpeakerSegment],
                        transcription_segments: List[TranscriptionSegment],
                        translation_results: List[TranslationResult]) -> List[ProcessedSegment]:
        """Combine results from all pipeline stages into unified segments."""
        processed_segments = []
        
        # Create a mapping of speaker segments to transcription/translation
        for i, speaker_seg in enumerate(speaker_segments):
            # Find corresponding transcription segment
            transcription_seg = None
            if i < len(transcription_segments):
                transcription_seg = transcription_segments[i]
            
            # Find corresponding translation result
            translation_result = None
            if i < len(translation_results):
                translation_result = translation_results[i]
            
            # Create ProcessedSegment
            processed_segment = ProcessedSegment(
                start_time=speaker_seg.start_time,
                end_time=speaker_seg.end_time,
                speaker_id=speaker_seg.speaker_id,
                original_text=transcription_seg.text if transcription_seg else "",
                original_language=transcription_seg.language if transcription_seg else "unknown",
                translated_text=translation_result.translated_text if translation_result else "",
                confidence_diarization=speaker_seg.confidence,
                confidence_transcription=transcription_seg.confidence if transcription_seg else 0.0,
                confidence_translation=translation_result.confidence if translation_result else 0.0,
                word_timestamps=transcription_seg.word_timestamps if transcription_seg else None,
                model_info={
                    'diarization_model': 'pyannote/speaker-diarization-3.1',
                    'transcription_model': f'faster-whisper-{self.whisper_model_size}',
                    'translation_model': translation_result.model_used if translation_result else 'none'
                }
            )
            
            processed_segments.append(processed_segment)
        
        return processed_segments
    
    def _save_outputs(self,
                     outputs: Dict[str, str],
                     audio_path: Path,
                     formats: List[str]) -> Dict[str, str]:
        """Save output files to disk."""
        saved_files = {}
        base_filename = safe_filename(audio_path.stem)
        
        format_extensions = {
            'json': 'json',
            'srt_original': 'srt',
            'srt_translated': 'en.srt',
            'text': 'txt',
            'csv': 'csv',
            'timeline': 'timeline.json',
            'summary': 'summary.txt'
        }
        
        for format_name in formats:
            if format_name in outputs:
                extension = format_extensions.get(format_name, 'txt')
                filename = f"{base_filename}.{extension}"
                filepath = self.output_dir / filename
                
                try:
                    with open(filepath, 'w', encoding='utf-8') as f:
                        f.write(outputs[format_name])
                    
                    saved_files[format_name] = str(filepath)
                    logger.info(f"Saved {format_name} output to: {filepath}")
                    
                except Exception as e:
                    logger.error(f"Failed to save {format_name} output: {e}")
        
        return saved_files
    
    def benchmark_system(self, test_audio_path: str) -> Dict[str, Any]:
        """Run system benchmark on test audio."""
        logger.info("Running system benchmark...")
        
        system_info = get_system_info()
        
        # Run multiple iterations for more accurate timing
        iterations = 3
        benchmark_results = []
        
        for i in range(iterations):
            logger.info(f"Benchmark iteration {i+1}/{iterations}")
            try:
                result = self.process_audio(test_audio_path, save_outputs=False)
                benchmark_results.append(result['processing_stats'])
            except Exception as e:
                logger.error(f"Benchmark iteration {i+1} failed: {e}")
                continue
        
        if not benchmark_results:
            return {'error': 'All benchmark iterations failed'}
        
        # Calculate averages
        avg_times = {}
        for component in benchmark_results[0]['component_times']:
            avg_times[component] = sum(r['component_times'][component] for r in benchmark_results) / len(benchmark_results)
        
        avg_total_time = sum(r['total_time'] for r in benchmark_results) / len(benchmark_results)
        
        return {
            'system_info': system_info,
            'test_file': test_audio_path,
            'iterations': len(benchmark_results),
            'average_times': avg_times,
            'average_total_time': avg_total_time,
            'all_iterations': benchmark_results
        }


def main():
    """Command-line interface for the audio intelligence pipeline."""
    parser = argparse.ArgumentParser(
        description="Multilingual Audio Intelligence System",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  python main.py audio.wav                     # Process with defaults
  python main.py audio.mp3 --output-dir ./out  # Custom output directory
  python main.py audio.flac --translate-to es  # Translate to Spanish
  python main.py --benchmark test.wav          # Run performance benchmark
  python main.py audio.ogg --format json text  # Generate specific formats
        """
    )
    
    # Input arguments
    parser.add_argument("audio_file", nargs='?', help="Path to input audio file")
    
    # Model configuration
    parser.add_argument("--whisper-model", choices=["tiny", "small", "medium", "large"],
                       default="small", help="Whisper model size (default: small)")
    parser.add_argument("--translate-to", default="en",
                       help="Target language for translation (default: en)")
    parser.add_argument("--device", choices=["cpu", "cuda", "auto"], default="auto",
                       help="Device to run on (default: auto)")
    parser.add_argument("--hf-token", help="Hugging Face token for gated models")
    
    # Output configuration
    parser.add_argument("--output-dir", "-o", default="./results",
                       help="Output directory (default: ./results)")
    parser.add_argument("--format", nargs='+',
                       choices=["json", "srt", "text", "csv", "timeline", "summary", "all"],
                       default=["json", "srt", "text", "summary"],
                       help="Output formats to generate")
    parser.add_argument("--no-save", action="store_true",
                       help="Don't save outputs to files")
    
    # Utility options
    parser.add_argument("--benchmark", action="store_true",
                       help="Run performance benchmark")
    parser.add_argument("--system-info", action="store_true",
                       help="Show system information and exit")
    parser.add_argument("--verbose", "-v", action="store_true",
                       help="Enable verbose logging")
    parser.add_argument("--quiet", "-q", action="store_true",
                       help="Suppress non-error output")
    
    args = parser.parse_args()
    
    # Configure logging
    if args.verbose:
        logging.getLogger().setLevel(logging.DEBUG)
    elif args.quiet:
        logging.getLogger().setLevel(logging.ERROR)
    
    # Handle system info request
    if args.system_info:
        system_info = get_system_info()
        print("\n=== SYSTEM INFORMATION ===")
        for key, value in system_info.items():
            print(f"{key}: {value}")
        return
    
    # Validate audio file argument
    if not args.audio_file:
        parser.error("Audio file is required (unless using --system-info)")
    
    audio_path = Path(args.audio_file)
    if not audio_path.exists():
        parser.error(f"Audio file not found: {audio_path}")
    
    try:
        # Initialize pipeline
        pipeline = AudioIntelligencePipeline(
            whisper_model_size=args.whisper_model,
            target_language=args.translate_to,
            device=args.device,
            hf_token=args.hf_token,
            output_dir=args.output_dir
        )
        
        if args.benchmark:
            # Run benchmark
            print(f"\n=== RUNNING BENCHMARK ON {audio_path.name} ===")
            benchmark_results = pipeline.benchmark_system(str(audio_path))
            
            if 'error' in benchmark_results:
                print(f"Benchmark failed: {benchmark_results['error']}")
                return 1
            
            print(f"\nBenchmark Results ({benchmark_results['iterations']} iterations):")
            print(f"Average total time: {format_duration(benchmark_results['average_total_time'])}")
            print("\nComponent breakdown:")
            for component, avg_time in benchmark_results['average_times'].items():
                print(f"  {component}: {format_duration(avg_time)}")
            
            print(f"\nSystem: {benchmark_results['system_info']['platform']}")
            print(f"GPU: {benchmark_results['system_info']['gpu_info']}")
            
        else:
            # Process audio file
            output_formats = args.format
            if 'all' in output_formats:
                output_formats = ['json', 'srt_original', 'srt_translated', 'text', 'csv', 'timeline', 'summary']
            
            results = pipeline.process_audio(
                str(audio_path),
                save_outputs=not args.no_save,
                output_formats=output_formats
            )
            
            # Print summary
            stats = results['processing_stats']
            print(f"\n=== PROCESSING COMPLETE ===")
            print(f"File: {audio_path.name}")
            print(f"Total time: {format_duration(stats['total_time'])}")
            print(f"Speakers: {stats['num_speakers']}")
            print(f"Segments: {stats['num_segments']}")
            print(f"Languages: {', '.join(stats['languages_detected'])}")
            print(f"Speech duration: {format_duration(stats['total_speech_duration'])}")
            
            if results['saved_files']:
                print(f"\nOutput files saved to: {args.output_dir}")
                for format_name, filepath in results['saved_files'].items():
                    print(f"  {format_name}: {Path(filepath).name}")
            
            if not args.quiet:
                # Show sample of results
                segments = results['processed_segments'][:3]  # First 3 segments
                print(f"\nSample output (first {len(segments)} segments):")
                for i, seg in enumerate(segments, 1):
                    speaker = seg.speaker_id.replace("SPEAKER_", "Speaker ")
                    time_str = f"{seg.start_time:.1f}s-{seg.end_time:.1f}s"
                    print(f"  #{i} [{time_str}] {speaker} ({seg.original_language}):")
                    print(f"      Original: {seg.original_text}")
                    if seg.original_language != args.translate_to:
                        print(f"      Translated: {seg.translated_text}")
                
                if len(results['processed_segments']) > 3:
                    print(f"  ... and {len(results['processed_segments']) - 3} more segments")
        
        return 0
        
    except KeyboardInterrupt:
        print("\nProcessing interrupted by user")
        return 1
    except Exception as e:
        logger.error(f"Processing failed: {str(e)}")
        if args.verbose:
            import traceback
            traceback.print_exc()
        return 1


if __name__ == "__main__":
    sys.exit(main())