File size: 33,993 Bytes
3f792e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
"""
Output Formatting Module for Multilingual Audio Intelligence System
This module consolidates processed data from speaker diarization, speech recognition,
and neural machine translation into various structured formats for different use cases.
Designed for maximum flexibility and user-friendly output presentation.
Key Features:
- JSON format for programmatic access and API integration
- SRT subtitle format for video/media players with speaker labels
- Human-readable text format with rich metadata
- Interactive timeline format for web visualization
- CSV export for data analysis and spreadsheet applications
- Rich metadata preservation throughout all formats
- Error handling and graceful degradation
Output Formats: JSON, SRT, Plain Text, CSV, Timeline
Dependencies: json, csv, dataclasses
"""
import json
import csv
import io
import logging
from typing import List, Dict, Optional, Union, Any
from dataclasses import dataclass, asdict
from datetime import timedelta
import textwrap
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ProcessedSegment:
"""
Unified data structure for a processed audio segment with all metadata.
Attributes:
start_time (float): Segment start time in seconds
end_time (float): Segment end time in seconds
speaker_id (str): Speaker identifier
original_text (str): Transcribed text in original language
original_language (str): Detected original language code
translated_text (str): English translation
confidence_diarization (float): Speaker diarization confidence
confidence_transcription (float): Speech recognition confidence
confidence_translation (float): Translation confidence
word_timestamps (List[Dict]): Word-level timing information
model_info (Dict): Information about models used
"""
start_time: float
end_time: float
speaker_id: str
original_text: str
original_language: str
translated_text: str
confidence_diarization: float = 1.0
confidence_transcription: float = 1.0
confidence_translation: float = 1.0
word_timestamps: Optional[List[Dict]] = None
model_info: Optional[Dict] = None
@property
def duration(self) -> float:
"""Duration of the segment in seconds."""
return self.end_time - self.start_time
def to_dict(self) -> dict:
"""Convert to dictionary for JSON serialization."""
return asdict(self)
class OutputFormatter:
"""
Advanced output formatting for multilingual audio intelligence results.
Converts processed audio data into multiple user-friendly formats with
comprehensive metadata and beautiful presentation.
"""
def __init__(self, audio_filename: str = "audio_file"):
"""
Initialize the Output Formatter.
Args:
audio_filename (str): Name of the original audio file for references
"""
self.audio_filename = audio_filename
self.creation_timestamp = None
self.processing_stats = {}
def format_all_outputs(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None,
processing_stats: Optional[Dict] = None) -> Dict[str, str]:
"""
Generate all output formats in one call.
Args:
segments (List[ProcessedSegment]): Processed audio segments
audio_metadata (Dict, optional): Original audio file metadata
processing_stats (Dict, optional): Processing time and performance stats
Returns:
Dict[str, str]: Dictionary with all formatted outputs
"""
self.processing_stats = processing_stats or {}
return {
'json': self.to_json(segments, audio_metadata),
'srt_original': self.to_srt(segments, use_translation=False),
'srt_translated': self.to_srt(segments, use_translation=True),
'text': self.to_text(segments, audio_metadata),
'csv': self.to_csv(segments),
'timeline': self.to_timeline_json(segments),
'summary': self.generate_summary(segments, audio_metadata)
}
def to_json(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None) -> str:
"""
Convert segments to comprehensive JSON format.
Args:
segments (List[ProcessedSegment]): Processed segments
audio_metadata (Dict, optional): Audio file metadata
Returns:
str: JSON formatted string
"""
# Generate comprehensive statistics
stats = self._generate_statistics(segments)
# Create the main JSON structure
output = {
"metadata": {
"audio_filename": self.audio_filename,
"processing_timestamp": self._get_timestamp(),
"total_segments": len(segments),
"total_speakers": len(set(seg.speaker_id for seg in segments)),
"languages_detected": list(set(seg.original_language for seg in segments)),
"total_audio_duration": stats['total_duration'],
"total_speech_duration": stats['total_speech_duration'],
"speech_ratio": stats['speech_ratio'],
"audio_metadata": audio_metadata,
"processing_stats": self.processing_stats
},
"statistics": stats,
"segments": [seg.to_dict() for seg in segments],
"speakers": self._generate_speaker_stats(segments),
"languages": self._generate_language_stats(segments)
}
return json.dumps(output, indent=2, ensure_ascii=False)
def to_srt(self,
segments: List[ProcessedSegment],
use_translation: bool = False,
include_speaker_labels: bool = True) -> str:
"""
Convert segments to SRT subtitle format.
Args:
segments (List[ProcessedSegment]): Processed segments
use_translation (bool): Use translated text instead of original
include_speaker_labels (bool): Include speaker names in subtitles
Returns:
str: SRT formatted string
"""
srt_lines = []
for i, segment in enumerate(segments, 1):
# Format timestamp for SRT (HH:MM:SS,mmm)
start_time = self._seconds_to_srt_time(segment.start_time)
end_time = self._seconds_to_srt_time(segment.end_time)
# Choose text based on preference
text = segment.translated_text if use_translation else segment.original_text
# Add speaker label if requested
if include_speaker_labels:
speaker_name = self._format_speaker_name(segment.speaker_id)
text = f"<v {speaker_name}>{text}"
# Add language indicator for original text
if not use_translation and segment.original_language != 'en':
text = f"[{segment.original_language.upper()}] {text}"
# Build SRT entry
srt_entry = [
str(i),
f"{start_time} --> {end_time}",
text,
"" # Empty line separator
]
srt_lines.extend(srt_entry)
return "\n".join(srt_lines)
def to_text(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None,
include_word_timestamps: bool = False) -> str:
"""
Convert segments to human-readable text format.
Args:
segments (List[ProcessedSegment]): Processed segments
audio_metadata (Dict, optional): Audio file metadata
include_word_timestamps (bool): Include detailed word timing
Returns:
str: Formatted text string
"""
lines = []
# Header section
lines.append("=" * 80)
lines.append("MULTILINGUAL AUDIO INTELLIGENCE ANALYSIS")
lines.append("=" * 80)
lines.append("")
# File information
lines.append(f"Audio File: {self.audio_filename}")
lines.append(f"Analysis Date: {self._get_timestamp()}")
if audio_metadata:
lines.append(f"Duration: {self._format_duration(audio_metadata.get('duration_seconds', 0))}")
lines.append(f"Sample Rate: {audio_metadata.get('sample_rate', 'Unknown')} Hz")
lines.append(f"Channels: {audio_metadata.get('channels', 'Unknown')}")
lines.append("")
# Statistics section
stats = self._generate_statistics(segments)
lines.append("ANALYSIS SUMMARY")
lines.append("-" * 40)
lines.append(f"Total Speakers: {len(set(seg.speaker_id for seg in segments))}")
lines.append(f"Languages Detected: {', '.join(set(seg.original_language for seg in segments))}")
lines.append(f"Total Segments: {len(segments)}")
lines.append(f"Speech Duration: {self._format_duration(stats['total_speech_duration'])}")
lines.append(f"Speech Ratio: {stats['speech_ratio']:.1%}")
if self.processing_stats:
lines.append(f"Processing Time: {self.processing_stats.get('total_time', 'Unknown')}")
lines.append("")
# Speaker statistics
speaker_stats = self._generate_speaker_stats(segments)
lines.append("SPEAKER BREAKDOWN")
lines.append("-" * 40)
for speaker_id, stats in speaker_stats.items():
speaker_name = self._format_speaker_name(speaker_id)
lines.append(f"{speaker_name}:")
lines.append(f" Speaking Time: {self._format_duration(stats['total_speaking_time'])}")
lines.append(f" Number of Turns: {stats['number_of_turns']}")
lines.append(f" Average Turn: {self._format_duration(stats['average_turn_duration'])}")
lines.append(f" Longest Turn: {self._format_duration(stats['longest_turn'])}")
if stats['languages']:
lines.append(f" Languages: {', '.join(stats['languages'])}")
lines.append("")
# Transcript section
lines.append("FULL TRANSCRIPT")
lines.append("=" * 80)
lines.append("")
for i, segment in enumerate(segments, 1):
# Timestamp and speaker header
timestamp = f"[{self._format_duration(segment.start_time)} - {self._format_duration(segment.end_time)}]"
speaker_name = self._format_speaker_name(segment.speaker_id)
lines.append(f"#{i:3d} {timestamp} {speaker_name}")
# Original text with language indicator
if segment.original_language != 'en':
lines.append(f" Original ({segment.original_language}): {segment.original_text}")
lines.append(f" Translation: {segment.translated_text}")
else:
lines.append(f" Text: {segment.original_text}")
# Confidence scores
lines.append(f" Confidence: D:{segment.confidence_diarization:.2f} "
f"T:{segment.confidence_transcription:.2f} "
f"TR:{segment.confidence_translation:.2f}")
# Word timestamps if requested
if include_word_timestamps and segment.word_timestamps:
lines.append(" Word Timing:")
word_lines = []
for word_info in segment.word_timestamps[:10]: # Limit to first 10 words
word_time = f"{word_info['start']:.1f}s"
word_lines.append(f"'{word_info['word']}'@{word_time}")
lines.append(f" {', '.join(word_lines)}")
if len(segment.word_timestamps) > 10:
lines.append(f" ... and {len(segment.word_timestamps) - 10} more words")
lines.append("")
# Footer
lines.append("=" * 80)
lines.append("Generated by Multilingual Audio Intelligence System")
lines.append("=" * 80)
return "\n".join(lines)
def to_csv(self, segments: List[ProcessedSegment]) -> str:
"""
Convert segments to CSV format for data analysis.
Args:
segments (List[ProcessedSegment]): Processed segments
Returns:
str: CSV formatted string
"""
output = io.StringIO()
fieldnames = [
'segment_id', 'start_time', 'end_time', 'duration',
'speaker_id', 'original_language', 'original_text',
'translated_text', 'confidence_diarization',
'confidence_transcription', 'confidence_translation',
'word_count_original', 'word_count_translated'
]
writer = csv.DictWriter(output, fieldnames=fieldnames)
writer.writeheader()
for i, segment in enumerate(segments, 1):
row = {
'segment_id': i,
'start_time': segment.start_time,
'end_time': segment.end_time,
'duration': segment.duration,
'speaker_id': segment.speaker_id,
'original_language': segment.original_language,
'original_text': segment.original_text,
'translated_text': segment.translated_text,
'confidence_diarization': segment.confidence_diarization,
'confidence_transcription': segment.confidence_transcription,
'confidence_translation': segment.confidence_translation,
'word_count_original': len(segment.original_text.split()),
'word_count_translated': len(segment.translated_text.split())
}
writer.writerow(row)
return output.getvalue()
def to_timeline_json(self, segments: List[ProcessedSegment]) -> str:
"""
Convert segments to timeline JSON format for interactive visualization.
Args:
segments (List[ProcessedSegment]): Processed segments
Returns:
str: Timeline JSON formatted string
"""
# Prepare timeline data
timeline_data = {
"title": {
"text": {
"headline": f"Audio Analysis: {self.audio_filename}",
"text": f"Interactive timeline of speaker segments and transcription"
}
},
"events": []
}
for i, segment in enumerate(segments):
event = {
"start_date": {
"second": int(segment.start_time)
},
"end_date": {
"second": int(segment.end_time)
},
"text": {
"headline": f"{self._format_speaker_name(segment.speaker_id)} ({segment.original_language})",
"text": f"<p><strong>Original:</strong> {segment.original_text}</p>"
f"<p><strong>Translation:</strong> {segment.translated_text}</p>"
f"<p><em>Duration: {segment.duration:.1f}s, "
f"Confidence: {segment.confidence_transcription:.2f}</em></p>"
},
"group": segment.speaker_id,
"media": {
"caption": f"Segment {i+1}: {self._format_duration(segment.start_time)} - {self._format_duration(segment.end_time)}"
}
}
timeline_data["events"].append(event)
return json.dumps(timeline_data, indent=2, ensure_ascii=False)
def generate_summary(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None) -> str:
"""
Generate a concise summary of the analysis.
Args:
segments (List[ProcessedSegment]): Processed segments
audio_metadata (Dict, optional): Audio file metadata
Returns:
str: Summary text
"""
if not segments:
return "No speech segments were detected in the audio file."
stats = self._generate_statistics(segments)
speaker_stats = self._generate_speaker_stats(segments)
summary_lines = []
# Basic overview
summary_lines.append(f"ANALYSIS SUMMARY FOR {self.audio_filename}")
summary_lines.append("=" * 50)
summary_lines.append("")
# Key statistics
summary_lines.append(f"• {len(set(seg.speaker_id for seg in segments))} speakers detected")
summary_lines.append(f"• {len(segments)} speech segments identified")
summary_lines.append(f"• {len(set(seg.original_language for seg in segments))} languages detected: "
f"{', '.join(set(seg.original_language for seg in segments))}")
summary_lines.append(f"• {stats['speech_ratio']:.1%} of audio contains speech")
summary_lines.append("")
# Speaker overview
summary_lines.append("SPEAKER BREAKDOWN:")
for speaker_id, stats in speaker_stats.items():
speaker_name = self._format_speaker_name(speaker_id)
percentage = (stats['total_speaking_time'] / sum(s['total_speaking_time'] for s in speaker_stats.values())) * 100
summary_lines.append(f"• {speaker_name}: {self._format_duration(stats['total_speaking_time'])} "
f"({percentage:.1f}%) across {stats['number_of_turns']} turns")
summary_lines.append("")
# Language breakdown if multilingual
languages = set(seg.original_language for seg in segments)
if len(languages) > 1:
summary_lines.append("LANGUAGE BREAKDOWN:")
lang_stats = self._generate_language_stats(segments)
for lang, stats in lang_stats.items():
percentage = (stats['speaking_time'] / sum(s['speaking_time'] for s in lang_stats.values())) * 100
summary_lines.append(f"• {lang.upper()}: {self._format_duration(stats['speaking_time'])} "
f"({percentage:.1f}%) in {stats['segment_count']} segments")
summary_lines.append("")
# Key insights
summary_lines.append("KEY INSIGHTS:")
# Most active speaker
most_active = max(speaker_stats.items(), key=lambda x: x[1]['total_speaking_time'])
summary_lines.append(f"• Most active speaker: {self._format_speaker_name(most_active[0])}")
# Longest turn
longest_segment = max(segments, key=lambda s: s.duration)
summary_lines.append(f"• Longest speaking turn: {self._format_duration(longest_segment.duration)} "
f"by {self._format_speaker_name(longest_segment.speaker_id)}")
# Average confidence
avg_confidence = sum(seg.confidence_transcription for seg in segments) / len(segments)
summary_lines.append(f"• Average transcription confidence: {avg_confidence:.2f}")
if len(languages) > 1:
# Code-switching detection
code_switches = 0
for i in range(1, len(segments)):
if segments[i-1].speaker_id == segments[i].speaker_id and segments[i-1].original_language != segments[i].original_language:
code_switches += 1
if code_switches > 0:
summary_lines.append(f"• {code_switches} potential code-switching instances detected")
return "\n".join(summary_lines)
def _generate_statistics(self, segments: List[ProcessedSegment]) -> Dict[str, Any]:
"""Generate comprehensive statistics from segments."""
if not segments:
return {}
total_speech_duration = sum(seg.duration for seg in segments)
total_duration = max(seg.end_time for seg in segments) if segments else 0
return {
'total_duration': total_duration,
'total_speech_duration': total_speech_duration,
'speech_ratio': total_speech_duration / total_duration if total_duration > 0 else 0,
'average_segment_duration': total_speech_duration / len(segments),
'longest_segment': max(seg.duration for seg in segments),
'shortest_segment': min(seg.duration for seg in segments),
'average_confidence_diarization': sum(seg.confidence_diarization for seg in segments) / len(segments),
'average_confidence_transcription': sum(seg.confidence_transcription for seg in segments) / len(segments),
'average_confidence_translation': sum(seg.confidence_translation for seg in segments) / len(segments),
'total_words_original': sum(len(seg.original_text.split()) for seg in segments),
'total_words_translated': sum(len(seg.translated_text.split()) for seg in segments)
}
def _generate_speaker_stats(self, segments: List[ProcessedSegment]) -> Dict[str, Dict]:
"""Generate per-speaker statistics."""
speaker_stats = {}
for segment in segments:
speaker_id = segment.speaker_id
if speaker_id not in speaker_stats:
speaker_stats[speaker_id] = {
'total_speaking_time': 0.0,
'number_of_turns': 0,
'longest_turn': 0.0,
'shortest_turn': float('inf'),
'languages': set()
}
stats = speaker_stats[speaker_id]
stats['total_speaking_time'] += segment.duration
stats['number_of_turns'] += 1
stats['longest_turn'] = max(stats['longest_turn'], segment.duration)
stats['shortest_turn'] = min(stats['shortest_turn'], segment.duration)
stats['languages'].add(segment.original_language)
# Calculate averages and convert sets to lists
for speaker_id, stats in speaker_stats.items():
if stats['number_of_turns'] > 0:
stats['average_turn_duration'] = stats['total_speaking_time'] / stats['number_of_turns']
else:
stats['average_turn_duration'] = 0.0
if stats['shortest_turn'] == float('inf'):
stats['shortest_turn'] = 0.0
stats['languages'] = list(stats['languages'])
return speaker_stats
def _generate_language_stats(self, segments: List[ProcessedSegment]) -> Dict[str, Dict]:
"""Generate per-language statistics."""
language_stats = {}
for segment in segments:
lang = segment.original_language
if lang not in language_stats:
language_stats[lang] = {
'speaking_time': 0.0,
'segment_count': 0,
'speakers': set()
}
stats = language_stats[lang]
stats['speaking_time'] += segment.duration
stats['segment_count'] += 1
stats['speakers'].add(segment.speaker_id)
# Convert sets to lists
for lang, stats in language_stats.items():
stats['speakers'] = list(stats['speakers'])
return language_stats
def _seconds_to_srt_time(self, seconds: float) -> str:
"""Convert seconds to SRT timestamp format (HH:MM:SS,mmm)."""
td = timedelta(seconds=seconds)
hours, remainder = divmod(td.total_seconds(), 3600)
minutes, seconds = divmod(remainder, 60)
milliseconds = int((seconds % 1) * 1000)
return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d},{milliseconds:03d}"
def _format_duration(self, seconds: float) -> str:
"""Format duration in human-readable format."""
if seconds < 60:
return f"{seconds:.1f}s"
elif seconds < 3600:
minutes = int(seconds // 60)
secs = seconds % 60
return f"{minutes}m {secs:.1f}s"
else:
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = seconds % 60
return f"{hours}h {minutes}m {secs:.1f}s"
def _format_speaker_name(self, speaker_id: str) -> str:
"""Format speaker ID into a readable name."""
if speaker_id.startswith("SPEAKER_"):
number = speaker_id.replace("SPEAKER_", "")
return f"Speaker {number}"
return speaker_id.replace("_", " ").title()
def _get_timestamp(self) -> str:
"""Get current timestamp in ISO format."""
from datetime import datetime
return datetime.now().isoformat()
# Convenience functions for easy usage
def create_processed_segment(start_time: float,
end_time: float,
speaker_id: str,
original_text: str,
original_language: str,
translated_text: str,
**kwargs) -> ProcessedSegment:
"""
Convenience function to create a ProcessedSegment.
Args:
start_time (float): Segment start time
end_time (float): Segment end time
speaker_id (str): Speaker identifier
original_text (str): Original transcribed text
original_language (str): Original language code
translated_text (str): Translated text
**kwargs: Additional optional parameters
Returns:
ProcessedSegment: Created segment object
"""
return ProcessedSegment(
start_time=start_time,
end_time=end_time,
speaker_id=speaker_id,
original_text=original_text,
original_language=original_language,
translated_text=translated_text,
**kwargs
)
def format_pipeline_output(diarization_segments,
transcription_segments,
translation_results,
audio_filename: str = "audio_file",
audio_metadata: Optional[Dict] = None) -> Dict[str, str]:
"""
Convenience function to format complete pipeline output.
Args:
diarization_segments: Speaker diarization results
transcription_segments: Speech recognition results
translation_results: Translation results
audio_filename (str): Original audio filename
audio_metadata (Dict, optional): Audio file metadata
Returns:
Dict[str, str]: All formatted outputs
"""
# Combine all results into ProcessedSegment objects
processed_segments = []
# This is a simplified combination - in practice you'd need proper alignment
for i, (diar_seg, trans_seg, trans_result) in enumerate(
zip(diarization_segments, transcription_segments, translation_results)
):
segment = ProcessedSegment(
start_time=diar_seg.start_time,
end_time=diar_seg.end_time,
speaker_id=diar_seg.speaker_id,
original_text=trans_seg.text,
original_language=trans_seg.language,
translated_text=trans_result.translated_text,
confidence_diarization=diar_seg.confidence,
confidence_transcription=trans_seg.confidence,
confidence_translation=trans_result.confidence,
word_timestamps=trans_seg.word_timestamps
)
processed_segments.append(segment)
# Format all outputs
formatter = OutputFormatter(audio_filename)
return formatter.format_all_outputs(processed_segments, audio_metadata)
# Example usage and testing
if __name__ == "__main__":
import argparse
def main():
"""Command line interface for testing output formatting."""
parser = argparse.ArgumentParser(description="Audio Analysis Output Formatter")
parser.add_argument("--demo", action="store_true",
help="Run with demo data")
parser.add_argument("--format", choices=["json", "srt", "text", "csv", "timeline", "all"],
default="all", help="Output format to generate")
parser.add_argument("--output-file", "-o",
help="Save output to file instead of printing")
args = parser.parse_args()
if args.demo:
# Create demo data
demo_segments = [
ProcessedSegment(
start_time=0.0, end_time=3.5,
speaker_id="SPEAKER_00",
original_text="Hello, how are you today?",
original_language="en",
translated_text="Hello, how are you today?",
confidence_diarization=0.95,
confidence_transcription=0.92,
confidence_translation=1.0,
word_timestamps=[
{"word": "Hello", "start": 0.0, "end": 0.5, "confidence": 0.99},
{"word": "how", "start": 1.0, "end": 1.2, "confidence": 0.98},
{"word": "are", "start": 1.3, "end": 1.5, "confidence": 0.97},
{"word": "you", "start": 1.6, "end": 1.9, "confidence": 0.98},
{"word": "today", "start": 2.5, "end": 3.2, "confidence": 0.96}
]
),
ProcessedSegment(
start_time=4.0, end_time=7.8,
speaker_id="SPEAKER_01",
original_text="Bonjour, comment allez-vous?",
original_language="fr",
translated_text="Hello, how are you?",
confidence_diarization=0.87,
confidence_transcription=0.89,
confidence_translation=0.94
),
ProcessedSegment(
start_time=8.5, end_time=12.1,
speaker_id="SPEAKER_00",
original_text="I'm doing well, thank you. What about you?",
original_language="en",
translated_text="I'm doing well, thank you. What about you?",
confidence_diarization=0.93,
confidence_transcription=0.95,
confidence_translation=1.0
),
ProcessedSegment(
start_time=13.0, end_time=16.2,
speaker_id="SPEAKER_01",
original_text="Ça va très bien, merci beaucoup!",
original_language="fr",
translated_text="I'm doing very well, thank you very much!",
confidence_diarization=0.91,
confidence_transcription=0.88,
confidence_translation=0.92
)
]
demo_metadata = {
"duration_seconds": 16.2,
"sample_rate": 16000,
"channels": 1
}
# Create formatter and generate output
formatter = OutputFormatter("demo_conversation.wav")
if args.format == "all":
outputs = formatter.format_all_outputs(demo_segments, demo_metadata)
if args.output_file:
# Save each format to separate files
base_name = args.output_file.rsplit('.', 1)[0]
for format_type, content in outputs.items():
filename = f"{base_name}.{format_type}"
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
print(f"Saved {format_type} output to {filename}")
else:
# Print all formats
for format_type, content in outputs.items():
print(f"\n{'='*20} {format_type.upper()} {'='*20}")
print(content)
else:
# Generate specific format
if args.format == "json":
output = formatter.to_json(demo_segments, demo_metadata)
elif args.format == "srt":
output = formatter.to_srt(demo_segments, use_translation=False)
elif args.format == "text":
output = formatter.to_text(demo_segments, demo_metadata)
elif args.format == "csv":
output = formatter.to_csv(demo_segments)
elif args.format == "timeline":
output = formatter.to_timeline_json(demo_segments)
if args.output_file:
with open(args.output_file, 'w', encoding='utf-8') as f:
f.write(output)
print(f"Output saved to {args.output_file}")
else:
print(output)
else:
print("Please use --demo flag to run with demo data, or integrate with your audio processing pipeline.")
main() |