File size: 24,523 Bytes
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
"""
Speaker Diarization Module for Multilingual Audio Intelligence System

This module implements state-of-the-art speaker diarization using pyannote.audio.
It segments audio to identify "who spoke when" with high accuracy and language-agnostic
speaker separation capabilities as required by PS-6.

Key Features:
- SOTA speaker diarization using pyannote.audio
- Language-agnostic voice characteristic analysis
- Integrated Voice Activity Detection (VAD)
- Automatic speaker count detection
- CPU and GPU optimization support
- Robust error handling and logging

Model: pyannote/speaker-diarization-3.1
Dependencies: pyannote.audio, torch, transformers
"""

import os
import logging
import warnings
import numpy as np
import torch
from typing import List, Tuple, Dict, Optional, Union
import tempfile
from dataclasses import dataclass
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

try:
    from pyannote.audio import Pipeline
    from pyannote.core import Annotation, Segment
    PYANNOTE_AVAILABLE = True
except ImportError:
    PYANNOTE_AVAILABLE = False
    logging.warning("pyannote.audio not available. Install with: pip install pyannote.audio")

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Suppress various warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)


@dataclass
class SpeakerSegment:
    """
    Data class representing a single speaker segment.
    
    Attributes:
        start_time (float): Segment start time in seconds
        end_time (float): Segment end time in seconds  
        speaker_id (str): Unique speaker identifier (e.g., "SPEAKER_00")
        confidence (float): Confidence score of the diarization (if available)
    """
    start_time: float
    end_time: float
    speaker_id: str
    confidence: float = 1.0
    
    @property
    def duration(self) -> float:
        """Duration of the segment in seconds."""
        return self.end_time - self.start_time
    
    def to_dict(self) -> dict:
        """Convert to dictionary for JSON serialization."""
        return {
            'start_time': self.start_time,
            'end_time': self.end_time,
            'speaker_id': self.speaker_id,
            'duration': self.duration,
            'confidence': self.confidence
        }


class SpeakerDiarizer:
    """
    State-of-the-art speaker diarization using pyannote.audio.
    
    This class provides language-agnostic speaker diarization capabilities,
    focusing on acoustic voice characteristics rather than linguistic content.
    """
    
    def __init__(self, 
                 model_name: str = "pyannote/speaker-diarization-3.1",
                 hf_token: Optional[str] = None,
                 device: Optional[str] = None,
                 min_speakers: Optional[int] = None,
                 max_speakers: Optional[int] = None):
        """
        Initialize the Speaker Diarizer.
        
        Args:
            model_name (str): Hugging Face model name for diarization
            hf_token (str, optional): Hugging Face token for gated models
            device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
            min_speakers (int, optional): Minimum number of speakers to detect
            max_speakers (int, optional): Maximum number of speakers to detect
        """
        self.model_name = model_name
        self.hf_token = hf_token or os.getenv('HUGGINGFACE_TOKEN')
        self.min_speakers = min_speakers
        self.max_speakers = max_speakers
        
        # Device selection
        if device == 'auto' or device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = torch.device(device)
        
        logger.info(f"Initializing SpeakerDiarizer on {self.device}")
        
        # Initialize pipeline
        self.pipeline = None
        self._load_pipeline()
    
    def _load_pipeline(self):
        """Load the pyannote.audio diarization pipeline."""
        if not PYANNOTE_AVAILABLE:
            raise ImportError(
                "pyannote.audio is required for speaker diarization. "
                "Install with: pip install pyannote.audio"
            )
        
        try:
            # Load the pre-trained pipeline
            logger.info(f"Loading {self.model_name}...")
            
            if self.hf_token:
                self.pipeline = Pipeline.from_pretrained(
                    self.model_name, 
                    use_auth_token=self.hf_token
                )
            else:
                # Try without token first (for public models)
                try:
                    self.pipeline = Pipeline.from_pretrained(self.model_name)
                except Exception as e:
                    logger.error(
                        f"Failed to load {self.model_name}. "
                        "This model may be gated and require a Hugging Face token. "
                        f"Set HUGGINGFACE_TOKEN environment variable. Error: {e}"
                    )
                    raise
            
            # Move pipeline to appropriate device
            self.pipeline = self.pipeline.to(self.device)
            
            # Configure speaker count constraints
            if self.min_speakers is not None or self.max_speakers is not None:
                self.pipeline.instantiate({
                    "clustering": {
                        "min_cluster_size": self.min_speakers or 1,
                        "max_num_speakers": self.max_speakers or 20
                    }
                })
            
            logger.info(f"Successfully loaded {self.model_name} on {self.device}")
            
        except Exception as e:
            logger.error(f"Failed to load diarization pipeline: {e}")
            raise
    
    def diarize(self, 
                audio_input: Union[str, np.ndarray], 
                sample_rate: int = 16000) -> List[SpeakerSegment]:
        """
        Perform speaker diarization on audio input.
        
        Args:
            audio_input: Audio file path or numpy array
            sample_rate: Sample rate if audio_input is numpy array
            
        Returns:
            List[SpeakerSegment]: List of speaker segments with timestamps
            
        Raises:
            ValueError: If input is invalid
            Exception: For diarization errors
        """
        if self.pipeline is None:
            raise RuntimeError("Pipeline not loaded. Call _load_pipeline() first.")
        
        try:
            # Prepare audio input for pyannote
            audio_file = self._prepare_audio_input(audio_input, sample_rate)
            
            logger.info("Starting speaker diarization...")
            start_time = torch.cuda.Event(enable_timing=True) if torch.cuda.is_available() else None
            end_time = torch.cuda.Event(enable_timing=True) if torch.cuda.is_available() else None
            
            if start_time:
                start_time.record()
            
            # Run diarization
            diarization_result = self.pipeline(audio_file)
            
            if end_time and start_time:
                end_time.record()
                torch.cuda.synchronize()
                processing_time = start_time.elapsed_time(end_time) / 1000.0
                logger.info(f"Diarization completed in {processing_time:.2f}s")
            
            # Convert results to structured format
            segments = self._parse_diarization_result(diarization_result)
            
            # Log summary
            num_speakers = len(set(seg.speaker_id for seg in segments))
            total_speech_time = sum(seg.duration for seg in segments)
            
            logger.info(f"Detected {num_speakers} speakers, {len(segments)} segments, "
                       f"{total_speech_time:.1f}s total speech")
            
            return segments
            
        except Exception as e:
            logger.error(f"Diarization failed: {str(e)}")
            raise
        
        finally:
            # Clean up temporary files if created
            if isinstance(audio_input, np.ndarray):
                try:
                    if hasattr(audio_file, 'name') and os.path.exists(audio_file.name):
                        os.unlink(audio_file.name)
                except Exception:
                    pass
    
    def _prepare_audio_input(self, 
                           audio_input: Union[str, np.ndarray], 
                           sample_rate: int) -> str:
        """
        Prepare audio input for pyannote.audio pipeline.
        
        Args:
            audio_input: Audio file path or numpy array
            sample_rate: Sample rate for numpy array input
            
        Returns:
            str: Path to audio file ready for pyannote
        """
        if isinstance(audio_input, str):
            # File path - validate existence
            if not os.path.exists(audio_input):
                raise FileNotFoundError(f"Audio file not found: {audio_input}")
            return audio_input
            
        elif isinstance(audio_input, np.ndarray):
            # Numpy array - save to temporary file
            return self._save_array_to_tempfile(audio_input, sample_rate)
            
        else:
            raise ValueError(f"Unsupported audio input type: {type(audio_input)}")
    
    def _save_array_to_tempfile(self, audio_array: np.ndarray, sample_rate: int) -> str:
        """
        Save numpy array to temporary WAV file for pyannote processing.
        
        Args:
            audio_array: Audio data as numpy array
            sample_rate: Sample rate of the audio
            
        Returns:
            str: Path to temporary WAV file
        """
        try:
            import soundfile as sf
            
            # Create temporary file
            temp_file = tempfile.NamedTemporaryFile(
                delete=False, 
                suffix='.wav',
                prefix='diarization_'
            )
            temp_path = temp_file.name
            temp_file.close()
            
            # Ensure audio is in correct format
            if len(audio_array.shape) > 1:
                audio_array = audio_array.flatten()
            
            # Normalize to prevent clipping
            if np.max(np.abs(audio_array)) > 1.0:
                audio_array = audio_array / np.max(np.abs(audio_array))
            
            # Save using soundfile
            sf.write(temp_path, audio_array, sample_rate)
            
            logger.debug(f"Saved audio array to temporary file: {temp_path}")
            return temp_path
            
        except ImportError:
            # Fallback to scipy if soundfile not available
            try:
                from scipy.io import wavfile
                
                temp_file = tempfile.NamedTemporaryFile(
                    delete=False, 
                    suffix='.wav',
                    prefix='diarization_'
                )
                temp_path = temp_file.name
                temp_file.close()
                
                # Convert to 16-bit int for scipy
                if audio_array.dtype != np.int16:
                    audio_array_int = (audio_array * 32767).astype(np.int16)
                else:
                    audio_array_int = audio_array
                
                wavfile.write(temp_path, sample_rate, audio_array_int)
                
                logger.debug(f"Saved audio array using scipy: {temp_path}")
                return temp_path
                
            except ImportError:
                raise ImportError(
                    "Neither soundfile nor scipy available for audio saving. "
                    "Install with: pip install soundfile"
                )
    
    def _parse_diarization_result(self, diarization: Annotation) -> List[SpeakerSegment]:
        """
        Parse pyannote diarization result into structured segments.
        
        Args:
            diarization: pyannote Annotation object
            
        Returns:
            List[SpeakerSegment]: Parsed speaker segments
        """
        segments = []
        
        for segment, _, speaker_label in diarization.itertracks(yield_label=True):
            # Convert pyannote segment to our format
            speaker_segment = SpeakerSegment(
                start_time=float(segment.start),
                end_time=float(segment.end),
                speaker_id=str(speaker_label),
                confidence=1.0  # pyannote doesn't provide segment-level confidence
            )
            segments.append(speaker_segment)
        
        # Sort segments by start time
        segments.sort(key=lambda x: x.start_time)
        
        return segments
    
    def get_speaker_statistics(self, segments: List[SpeakerSegment]) -> Dict[str, dict]:
        """
        Generate speaker statistics from diarization results.
        
        Args:
            segments: List of speaker segments
            
        Returns:
            Dict: Speaker statistics including speaking time, turn counts, etc.
        """
        stats = {}
        
        for segment in segments:
            speaker_id = segment.speaker_id
            
            if speaker_id not in stats:
                stats[speaker_id] = {
                    'total_speaking_time': 0.0,
                    'number_of_turns': 0,
                    'average_turn_duration': 0.0,
                    'longest_turn': 0.0,
                    'shortest_turn': float('inf')
                }
            
            # Update statistics
            stats[speaker_id]['total_speaking_time'] += segment.duration
            stats[speaker_id]['number_of_turns'] += 1
            stats[speaker_id]['longest_turn'] = max(
                stats[speaker_id]['longest_turn'], 
                segment.duration
            )
            stats[speaker_id]['shortest_turn'] = min(
                stats[speaker_id]['shortest_turn'], 
                segment.duration
            )
        
        # Calculate averages
        for speaker_id, speaker_stats in stats.items():
            if speaker_stats['number_of_turns'] > 0:
                speaker_stats['average_turn_duration'] = (
                    speaker_stats['total_speaking_time'] / 
                    speaker_stats['number_of_turns']
                )
            
            # Handle edge case for shortest turn
            if speaker_stats['shortest_turn'] == float('inf'):
                speaker_stats['shortest_turn'] = 0.0
        
        return stats
    
    def merge_short_segments(self, 
                           segments: List[SpeakerSegment], 
                           min_duration: float = 1.0) -> List[SpeakerSegment]:
        """
        Merge segments that are too short with adjacent segments from same speaker.
        
        Args:
            segments: List of speaker segments
            min_duration: Minimum duration for segments in seconds
            
        Returns:
            List[SpeakerSegment]: Processed segments with short ones merged
        """
        if not segments:
            return segments
        
        merged_segments = []
        current_segment = segments[0]
        
        for next_segment in segments[1:]:
            # If current segment is too short and next is same speaker, merge
            if (current_segment.duration < min_duration and 
                current_segment.speaker_id == next_segment.speaker_id):
                
                # Extend current segment to include next segment
                current_segment.end_time = next_segment.end_time
                
            else:
                # Add current segment and move to next
                merged_segments.append(current_segment)
                current_segment = next_segment
        
        # Add the last segment
        merged_segments.append(current_segment)
        
        logger.debug(f"Merged {len(segments)} segments into {len(merged_segments)}")
        
        return merged_segments
    
    def export_to_rttm(self, 
                       segments: List[SpeakerSegment], 
                       audio_filename: str = "audio") -> str:
        """
        Export diarization results to RTTM format.
        
        RTTM (Rich Transcription Time Marked) is a standard format
        for speaker diarization results.
        
        Args:
            segments: List of speaker segments
            audio_filename: Name of the audio file for RTTM output
            
        Returns:
            str: RTTM formatted string
        """
        rttm_lines = []
        
        for segment in segments:
            # RTTM format: SPEAKER <file> <chnl> <tbeg> <tdur> <ortho> <stype> <name> <conf>
            rttm_line = (
                f"SPEAKER {audio_filename} 1 "
                f"{segment.start_time:.3f} {segment.duration:.3f} "
                f"<NA> <NA> {segment.speaker_id} {segment.confidence:.3f}"
            )
            rttm_lines.append(rttm_line)
        
        return "\n".join(rttm_lines)
    
    def __del__(self):
        """Cleanup resources when the object is destroyed."""
        # Clear GPU cache if using CUDA
        if hasattr(self, 'device') and self.device.type == 'cuda':
            try:
                torch.cuda.empty_cache()
            except Exception:
                pass


# Convenience function for easy usage
def diarize_audio(audio_input: Union[str, np.ndarray], 
                  sample_rate: int = 16000,
                  hf_token: Optional[str] = None,
                  min_speakers: Optional[int] = None,
                  max_speakers: Optional[int] = None,
                  merge_short: bool = True,
                  min_duration: float = 1.0) -> List[SpeakerSegment]:
    """
    Convenience function to perform speaker diarization with default settings.
    
    Args:
        audio_input: Audio file path or numpy array
        sample_rate: Sample rate for numpy array input
        hf_token: Hugging Face token for gated models
        min_speakers: Minimum number of speakers to detect
        max_speakers: Maximum number of speakers to detect
        merge_short: Whether to merge short segments
        min_duration: Minimum duration for segments (if merge_short=True)
        
    Returns:
        List[SpeakerSegment]: Speaker diarization results
        
    Example:
        >>> # From file
        >>> segments = diarize_audio("meeting.wav")
        >>> 
        >>> # From numpy array
        >>> import numpy as np
        >>> audio_data = np.random.randn(16000 * 60)  # 1 minute of audio
        >>> segments = diarize_audio(audio_data, sample_rate=16000)
        >>> 
        >>> # Print results
        >>> for seg in segments:
        >>>     print(f"{seg.speaker_id}: {seg.start_time:.1f}s - {seg.end_time:.1f}s")
    """
    # Initialize diarizer
    diarizer = SpeakerDiarizer(
        hf_token=hf_token,
        min_speakers=min_speakers,
        max_speakers=max_speakers
    )
    
    # Perform diarization
    segments = diarizer.diarize(audio_input, sample_rate)
    
    # Merge short segments if requested
    if merge_short and segments:
        segments = diarizer.merge_short_segments(segments, min_duration)
    
    return segments


# Example usage and testing
if __name__ == "__main__":
    import sys
    import argparse
    import json
    
    def main():
        """Command line interface for testing speaker diarization."""
        parser = argparse.ArgumentParser(description="Speaker Diarization Tool")
        parser.add_argument("audio_file", help="Path to audio file")
        parser.add_argument("--token", help="Hugging Face token")
        parser.add_argument("--min-speakers", type=int, help="Minimum number of speakers")
        parser.add_argument("--max-speakers", type=int, help="Maximum number of speakers") 
        parser.add_argument("--output-format", choices=["json", "rttm", "text"], 
                          default="text", help="Output format")
        parser.add_argument("--merge-short", action="store_true", 
                          help="Merge short segments")
        parser.add_argument("--min-duration", type=float, default=1.0,
                          help="Minimum segment duration for merging")
        parser.add_argument("--verbose", "-v", action="store_true",
                          help="Enable verbose logging")
        
        args = parser.parse_args()
        
        if args.verbose:
            logging.getLogger().setLevel(logging.DEBUG)
        
        try:
            # Perform diarization
            print(f"Processing audio file: {args.audio_file}")
            
            segments = diarize_audio(
                audio_input=args.audio_file,
                hf_token=args.token,
                min_speakers=args.min_speakers,
                max_speakers=args.max_speakers,
                merge_short=args.merge_short,
                min_duration=args.min_duration
            )
            
            # Output results in requested format
            if args.output_format == "json":
                # JSON output
                result = {
                    "audio_file": args.audio_file,
                    "num_speakers": len(set(seg.speaker_id for seg in segments)),
                    "num_segments": len(segments),
                    "total_speech_time": sum(seg.duration for seg in segments),
                    "segments": [seg.to_dict() for seg in segments]
                }
                print(json.dumps(result, indent=2))
                
            elif args.output_format == "rttm":
                # RTTM output
                diarizer = SpeakerDiarizer()
                rttm_content = diarizer.export_to_rttm(segments, args.audio_file)
                print(rttm_content)
                
            else:  # text format
                # Human-readable text output
                print(f"\n=== SPEAKER DIARIZATION RESULTS ===")
                print(f"Audio file: {args.audio_file}")
                print(f"Number of speakers: {len(set(seg.speaker_id for seg in segments))}")
                print(f"Number of segments: {len(segments)}")
                print(f"Total speech time: {sum(seg.duration for seg in segments):.1f}s")
                print("\n--- Segment Details ---")
                
                for i, segment in enumerate(segments, 1):
                    print(f"#{i:2d} | {segment.speaker_id:10s} | "
                          f"{segment.start_time:7.1f}s - {segment.end_time:7.1f}s | "
                          f"{segment.duration:5.1f}s")
                
                # Speaker statistics
                diarizer = SpeakerDiarizer()
                stats = diarizer.get_speaker_statistics(segments)
                
                print("\n--- Speaker Statistics ---")
                for speaker_id, speaker_stats in stats.items():
                    print(f"{speaker_id}:")
                    print(f"  Speaking time: {speaker_stats['total_speaking_time']:.1f}s")
                    print(f"  Number of turns: {speaker_stats['number_of_turns']}")
                    print(f"  Average turn: {speaker_stats['average_turn_duration']:.1f}s")
                    print(f"  Longest turn: {speaker_stats['longest_turn']:.1f}s")
                    print(f"  Shortest turn: {speaker_stats['shortest_turn']:.1f}s")
        
        except Exception as e:
            print(f"Error: {e}", file=sys.stderr)
            sys.exit(1)
    
    # Run CLI if script is executed directly
    if not PYANNOTE_AVAILABLE:
        print("Warning: pyannote.audio not available. Install with: pip install pyannote.audio")
        print("Running in demo mode...")
        
        # Create dummy segments for testing
        dummy_segments = [
            SpeakerSegment(0.0, 5.2, "SPEAKER_00", 0.95),
            SpeakerSegment(5.5, 8.3, "SPEAKER_01", 0.87),
            SpeakerSegment(8.8, 12.1, "SPEAKER_00", 0.92),
            SpeakerSegment(12.5, 15.7, "SPEAKER_01", 0.89),
        ]
        
        print("\n=== DEMO OUTPUT (pyannote.audio not available) ===")
        for segment in dummy_segments:
            print(f"{segment.speaker_id}: {segment.start_time:.1f}s - {segment.end_time:.1f}s")
    else:
        main()