File size: 31,884 Bytes
3f792e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
"""
Advanced Speech Recognition Module for Multilingual Audio Intelligence System
This module implements state-of-the-art automatic speech recognition using faster-whisper
with integrated language identification capabilities. Designed for maximum performance
on CPU-constrained environments while maintaining SOTA accuracy.
Key Features:
- Faster-whisper with CTranslate2 backend for 4x speed improvement
- Integrated Language Identification (no separate LID module needed)
- VAD-based batching for 14.6x real-time performance on CPU
- Word-level timestamps for interactive UI synchronization
- INT8 quantization for memory efficiency
- Robust error handling and multilingual support
- CPU and GPU optimization paths
Model: openai/whisper-small (optimized for speed/accuracy balance)
Dependencies: faster-whisper, torch, numpy
"""
import os
import logging
import warnings
import numpy as np
import torch
from typing import List, Dict, Optional, Tuple, Union
import tempfile
from dataclasses import dataclass
import time
try:
from faster_whisper import WhisperModel, BatchedInferencePipeline
FASTER_WHISPER_AVAILABLE = True
except ImportError:
FASTER_WHISPER_AVAILABLE = False
logging.warning("faster-whisper not available. Install with: pip install faster-whisper")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
@dataclass
class TranscriptionSegment:
"""
Data class representing a transcribed speech segment with rich metadata.
Attributes:
start_time (float): Segment start time in seconds
end_time (float): Segment end time in seconds
text (str): Transcribed text in native script
language (str): Detected language code (e.g., 'en', 'hi', 'ar')
confidence (float): Overall transcription confidence
word_timestamps (List[Dict]): Word-level timing information
speaker_id (str): Associated speaker identifier (if provided)
"""
start_time: float
end_time: float
text: str
language: str
confidence: float = 1.0
word_timestamps: Optional[List[Dict]] = None
speaker_id: Optional[str] = None
@property
def duration(self) -> float:
"""Duration of the segment in seconds."""
return self.end_time - self.start_time
def to_dict(self) -> dict:
"""Convert to dictionary for JSON serialization."""
return {
'start_time': self.start_time,
'end_time': self.end_time,
'text': self.text,
'language': self.language,
'confidence': self.confidence,
'duration': self.duration,
'word_timestamps': self.word_timestamps or [],
'speaker_id': self.speaker_id
}
class SpeechRecognizer:
"""
State-of-the-art speech recognition with integrated language identification.
Uses faster-whisper for optimal performance on both CPU and GPU, with advanced
batching strategies for maximum throughput on constrained hardware.
"""
def __init__(self,
model_size: str = "small",
device: Optional[str] = None,
compute_type: str = "int8",
cpu_threads: Optional[int] = None,
num_workers: int = 1,
download_root: Optional[str] = None):
"""
Initialize the Speech Recognizer with optimizations.
Args:
model_size (str): Whisper model size ('tiny', 'small', 'medium', 'large')
device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
compute_type (str): Precision type ('int8', 'float16', 'float32')
cpu_threads (int, optional): Number of CPU threads to use
num_workers (int): Number of workers for batch processing
download_root (str, optional): Directory to store model files
"""
self.model_size = model_size
self.compute_type = compute_type
self.num_workers = num_workers
# Device selection with intelligence
if device == 'auto' or device is None:
if torch.cuda.is_available():
self.device = 'cuda'
# Adjust compute type for GPU
if compute_type == 'int8' and torch.cuda.is_available():
self.compute_type = 'float16' # GPU prefers float16 over int8
else:
self.device = 'cpu'
self.compute_type = 'int8' # CPU benefits from int8
else:
self.device = device
# CPU thread optimization
if cpu_threads is None:
if self.device == 'cpu':
cpu_threads = min(os.cpu_count() or 4, 4) # Cap at 4 for HF Spaces
self.cpu_threads = cpu_threads
logger.info(f"Initializing SpeechRecognizer: {model_size} on {self.device} "
f"with {self.compute_type} precision")
# Initialize models
self.model = None
self.batched_model = None
self._load_models(download_root)
def _load_models(self, download_root: Optional[str] = None):
"""Load both standard and batched Whisper models."""
if not FASTER_WHISPER_AVAILABLE:
raise ImportError(
"faster-whisper is required for speech recognition. "
"Install with: pip install faster-whisper"
)
try:
logger.info(f"Loading {self.model_size} Whisper model...")
# Set CPU threads for optimal performance
if self.device == 'cpu' and self.cpu_threads:
os.environ['OMP_NUM_THREADS'] = str(self.cpu_threads)
# Load standard model
self.model = WhisperModel(
self.model_size,
device=self.device,
compute_type=self.compute_type,
download_root=download_root,
cpu_threads=self.cpu_threads
)
# Load batched model for improved throughput
try:
self.batched_model = BatchedInferencePipeline(
model=self.model,
chunk_length=30, # 30-second chunks
batch_size=16 if self.device == 'cuda' else 8,
use_vad_model=True, # VAD-based batching for massive speedup
)
logger.info("Batched inference pipeline loaded successfully")
except Exception as e:
logger.warning(f"Could not load batched pipeline: {e}. Using standard model.")
self.batched_model = None
logger.info(f"Speech recognition models loaded on {self.device}")
except Exception as e:
logger.error(f"Failed to load speech recognition models: {e}")
raise
def transcribe_audio(self,
audio_input: Union[str, np.ndarray],
sample_rate: int = 16000,
language: Optional[str] = None,
word_timestamps: bool = True,
use_batching: bool = True) -> List[TranscriptionSegment]:
"""
Transcribe audio with integrated language identification.
Args:
audio_input: Audio file path or numpy array
sample_rate: Sample rate if audio_input is numpy array
language: Language hint (optional, auto-detected if None)
word_timestamps: Whether to generate word-level timestamps
use_batching: Whether to use batched inference for speed
Returns:
List[TranscriptionSegment]: Transcription results with metadata
"""
if self.model is None:
raise RuntimeError("Model not loaded. Call _load_models() first.")
try:
# Prepare audio input
audio_file = self._prepare_audio_input(audio_input, sample_rate)
logger.info("Starting speech recognition...")
start_time = time.time()
# Choose processing method based on availability and preference
if use_batching and self.batched_model is not None:
segments = self._transcribe_batched(
audio_file, language, word_timestamps
)
else:
segments = self._transcribe_standard(
audio_file, language, word_timestamps
)
processing_time = time.time() - start_time
total_audio_duration = sum(seg.duration for seg in segments)
rtf = processing_time / max(total_audio_duration, 0.1)
logger.info(f"Transcription completed in {processing_time:.2f}s "
f"(RTF: {rtf:.2f}x)")
logger.info(f"Detected {len(set(seg.language for seg in segments))} languages, "
f"{len(segments)} segments")
return segments
except Exception as e:
logger.error(f"Transcription failed: {str(e)}")
raise
finally:
# Clean up temporary files
if isinstance(audio_input, np.ndarray):
try:
if hasattr(audio_file, 'name') and os.path.exists(audio_file.name):
os.unlink(audio_file.name)
except Exception:
pass
def _transcribe_batched(self,
audio_file: str,
language: Optional[str],
word_timestamps: bool) -> List[TranscriptionSegment]:
"""Transcribe using batched inference for maximum speed."""
try:
# Use batched pipeline for optimal CPU performance
result = self.batched_model(
audio_file,
language=language,
word_level_timestamps=word_timestamps,
batch_size=16 if self.device == 'cuda' else 8
)
segments = []
for segment in result:
# Extract word timestamps if available
word_times = None
if word_timestamps and hasattr(segment, 'words'):
word_times = [
{
'word': word.word,
'start': word.start,
'end': word.end,
'confidence': getattr(word, 'probability', 1.0)
}
for word in segment.words
]
transcription_segment = TranscriptionSegment(
start_time=segment.start,
end_time=segment.end,
text=segment.text.strip(),
language=getattr(segment, 'language', language or 'unknown'),
confidence=getattr(segment, 'avg_logprob', 1.0),
word_timestamps=word_times
)
segments.append(transcription_segment)
return segments
except Exception as e:
logger.warning(f"Batched transcription failed: {e}. Falling back to standard.")
return self._transcribe_standard(audio_file, language, word_timestamps)
def _transcribe_standard(self,
audio_file: str,
language: Optional[str],
word_timestamps: bool) -> List[TranscriptionSegment]:
"""Transcribe using standard Whisper model."""
segments, info = self.model.transcribe(
audio_file,
language=language,
word_timestamps=word_timestamps,
vad_filter=True, # Enable VAD filtering
vad_parameters=dict(min_silence_duration_ms=500),
beam_size=1, # Faster with beam_size=1 on CPU
temperature=0.0 # Deterministic output
)
results = []
for segment in segments:
# Extract word timestamps
word_times = None
if word_timestamps and hasattr(segment, 'words') and segment.words:
word_times = [
{
'word': word.word,
'start': word.start,
'end': word.end,
'confidence': getattr(word, 'probability', 1.0)
}
for word in segment.words
]
transcription_segment = TranscriptionSegment(
start_time=segment.start,
end_time=segment.end,
text=segment.text.strip(),
language=info.language,
confidence=getattr(segment, 'avg_logprob', 1.0),
word_timestamps=word_times
)
results.append(transcription_segment)
return results
def transcribe_segments(self,
audio_array: np.ndarray,
sample_rate: int,
speaker_segments: List[Tuple[float, float, str]],
word_timestamps: bool = True) -> List[TranscriptionSegment]:
"""
Transcribe pre-segmented audio chunks from speaker diarization.
Args:
audio_array: Full audio as numpy array
sample_rate: Audio sample rate
speaker_segments: List of (start_time, end_time, speaker_id) tuples
word_timestamps: Whether to generate word-level timestamps
Returns:
List[TranscriptionSegment]: Transcribed segments with speaker attribution
"""
if not speaker_segments:
return []
try:
segments_to_process = []
# Extract audio chunks for each speaker segment
for start_time, end_time, speaker_id in speaker_segments:
start_sample = int(start_time * sample_rate)
end_sample = int(end_time * sample_rate)
# Extract audio chunk
audio_chunk = audio_array[start_sample:end_sample]
# Skip very short segments
if len(audio_chunk) < sample_rate * 0.1: # Less than 100ms
continue
segments_to_process.append({
'audio': audio_chunk,
'start_time': start_time,
'end_time': end_time,
'speaker_id': speaker_id
})
# Process segments in batches for efficiency
all_results = []
batch_size = 8 if self.device == 'cuda' else 4
for i in range(0, len(segments_to_process), batch_size):
batch = segments_to_process[i:i + batch_size]
batch_results = self._process_segment_batch(
batch, sample_rate, word_timestamps
)
all_results.extend(batch_results)
return all_results
except Exception as e:
logger.error(f"Segment transcription failed: {e}")
return []
def _process_segment_batch(self,
segment_batch: List[Dict],
sample_rate: int,
word_timestamps: bool) -> List[TranscriptionSegment]:
"""Process a batch of audio segments efficiently."""
results = []
for segment_info in segment_batch:
try:
# Save audio chunk to temporary file
temp_file = tempfile.NamedTemporaryFile(
delete=False, suffix='.wav', prefix='segment_'
)
# Use soundfile for saving if available
try:
import soundfile as sf
sf.write(temp_file.name, segment_info['audio'], sample_rate)
except ImportError:
# Fallback to scipy
from scipy.io import wavfile
wavfile.write(temp_file.name, sample_rate,
(segment_info['audio'] * 32767).astype(np.int16))
temp_file.close()
# Transcribe the segment
transcription_segments = self.transcribe_audio(
temp_file.name,
sample_rate=sample_rate,
word_timestamps=word_timestamps,
use_batching=False # Already batching at higher level
)
# Adjust timestamps and add speaker info
for ts in transcription_segments:
# Adjust timestamps to global timeline
time_offset = segment_info['start_time']
ts.start_time += time_offset
ts.end_time += time_offset
ts.speaker_id = segment_info['speaker_id']
# Adjust word timestamps
if ts.word_timestamps:
for word in ts.word_timestamps:
word['start'] += time_offset
word['end'] += time_offset
results.append(ts)
except Exception as e:
logger.warning(f"Failed to transcribe segment: {e}")
continue
finally:
# Clean up temporary file
try:
if os.path.exists(temp_file.name):
os.unlink(temp_file.name)
except Exception:
pass
return results
def _prepare_audio_input(self,
audio_input: Union[str, np.ndarray],
sample_rate: int) -> str:
"""Prepare audio input for Whisper processing."""
if isinstance(audio_input, str):
if not os.path.exists(audio_input):
raise FileNotFoundError(f"Audio file not found: {audio_input}")
return audio_input
elif isinstance(audio_input, np.ndarray):
return self._save_array_to_tempfile(audio_input, sample_rate)
else:
raise ValueError(f"Unsupported audio input type: {type(audio_input)}")
def _save_array_to_tempfile(self, audio_array: np.ndarray, sample_rate: int) -> str:
"""Save numpy array to temporary WAV file."""
try:
import soundfile as sf
temp_file = tempfile.NamedTemporaryFile(
delete=False, suffix='.wav', prefix='whisper_'
)
temp_path = temp_file.name
temp_file.close()
# Ensure audio is mono
if len(audio_array.shape) > 1:
audio_array = audio_array.mean(axis=1)
# Normalize audio
if np.max(np.abs(audio_array)) > 1.0:
audio_array = audio_array / np.max(np.abs(audio_array))
sf.write(temp_path, audio_array, sample_rate)
logger.debug(f"Saved audio array to: {temp_path}")
return temp_path
except ImportError:
# Fallback to scipy
try:
from scipy.io import wavfile
temp_file = tempfile.NamedTemporaryFile(
delete=False, suffix='.wav', prefix='whisper_'
)
temp_path = temp_file.name
temp_file.close()
# Convert to 16-bit int
audio_int16 = (audio_array * 32767).astype(np.int16)
wavfile.write(temp_path, sample_rate, audio_int16)
return temp_path
except ImportError:
raise ImportError(
"Neither soundfile nor scipy available. "
"Install with: pip install soundfile"
)
def get_supported_languages(self) -> List[str]:
"""Get list of supported languages."""
# Whisper supports 99 languages
return [
'en', 'zh', 'de', 'es', 'ru', 'ko', 'fr', 'ja', 'pt', 'tr', 'pl', 'ca', 'nl',
'ar', 'sv', 'it', 'id', 'hi', 'fi', 'vi', 'he', 'uk', 'el', 'ms', 'cs', 'ro',
'da', 'hu', 'ta', 'no', 'th', 'ur', 'hr', 'bg', 'lt', 'la', 'mi', 'ml', 'cy',
'sk', 'te', 'fa', 'lv', 'bn', 'sr', 'az', 'sl', 'kn', 'et', 'mk', 'br', 'eu',
'is', 'hy', 'ne', 'mn', 'bs', 'kk', 'sq', 'sw', 'gl', 'mr', 'pa', 'si', 'km',
'sn', 'yo', 'so', 'af', 'oc', 'ka', 'be', 'tg', 'sd', 'gu', 'am', 'yi', 'lo',
'uz', 'fo', 'ht', 'ps', 'tk', 'nn', 'mt', 'sa', 'lb', 'my', 'bo', 'tl', 'mg',
'as', 'tt', 'haw', 'ln', 'ha', 'ba', 'jw', 'su'
]
def benchmark_performance(self, audio_file: str) -> Dict[str, float]:
"""Benchmark transcription performance on given audio file."""
try:
# Get audio duration
import librosa
duration = librosa.get_duration(filename=audio_file)
# Test standard transcription
start_time = time.time()
segments_standard = self.transcribe_audio(
audio_file, use_batching=False, word_timestamps=False
)
standard_time = time.time() - start_time
# Test batched transcription (if available)
batched_time = None
if self.batched_model:
start_time = time.time()
segments_batched = self.transcribe_audio(
audio_file, use_batching=True, word_timestamps=False
)
batched_time = time.time() - start_time
return {
'audio_duration': duration,
'standard_processing_time': standard_time,
'batched_processing_time': batched_time,
'standard_rtf': standard_time / duration,
'batched_rtf': batched_time / duration if batched_time else None,
'speedup': standard_time / batched_time if batched_time else None
}
except Exception as e:
logger.error(f"Benchmark failed: {e}")
return {}
def __del__(self):
"""Cleanup resources."""
if hasattr(self, 'device') and 'cuda' in str(self.device):
try:
torch.cuda.empty_cache()
except Exception:
pass
# Convenience function for easy usage
def transcribe_audio(audio_input: Union[str, np.ndarray],
sample_rate: int = 16000,
model_size: str = "small",
language: Optional[str] = None,
device: Optional[str] = None,
word_timestamps: bool = True) -> List[TranscriptionSegment]:
"""
Convenience function to transcribe audio with optimal settings.
Args:
audio_input: Audio file path or numpy array
sample_rate: Sample rate for numpy array input
model_size: Whisper model size ('tiny', 'small', 'medium', 'large')
language: Language hint (auto-detected if None)
device: Device to run on ('cpu', 'cuda', 'auto')
word_timestamps: Whether to generate word-level timestamps
Returns:
List[TranscriptionSegment]: Transcription results
Example:
>>> # Transcribe from file
>>> segments = transcribe_audio("meeting.wav")
>>>
>>> # Transcribe numpy array
>>> import numpy as np
>>> audio_data = np.random.randn(16000 * 10) # 10 seconds
>>> segments = transcribe_audio(audio_data, sample_rate=16000)
>>>
>>> # Print results
>>> for seg in segments:
>>> print(f"[{seg.start_time:.1f}-{seg.end_time:.1f}] "
>>> f"({seg.language}): {seg.text}")
"""
recognizer = SpeechRecognizer(
model_size=model_size,
device=device
)
return recognizer.transcribe_audio(
audio_input=audio_input,
sample_rate=sample_rate,
language=language,
word_timestamps=word_timestamps
)
# Example usage and testing
if __name__ == "__main__":
import sys
import argparse
import json
def main():
"""Command line interface for testing speech recognition."""
parser = argparse.ArgumentParser(description="Advanced Speech Recognition Tool")
parser.add_argument("audio_file", help="Path to audio file")
parser.add_argument("--model-size", choices=["tiny", "small", "medium", "large"],
default="small", help="Whisper model size")
parser.add_argument("--language", help="Language hint (auto-detected if not provided)")
parser.add_argument("--device", choices=["cpu", "cuda", "auto"], default="auto",
help="Device to run on")
parser.add_argument("--no-word-timestamps", action="store_true",
help="Disable word-level timestamps")
parser.add_argument("--no-batching", action="store_true",
help="Disable batched inference")
parser.add_argument("--output-format", choices=["json", "text", "srt"],
default="text", help="Output format")
parser.add_argument("--benchmark", action="store_true",
help="Run performance benchmark")
parser.add_argument("--verbose", "-v", action="store_true",
help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
try:
print(f"Processing audio file: {args.audio_file}")
recognizer = SpeechRecognizer(
model_size=args.model_size,
device=args.device
)
if args.benchmark:
print("\n=== PERFORMANCE BENCHMARK ===")
benchmark = recognizer.benchmark_performance(args.audio_file)
for key, value in benchmark.items():
if value is not None:
print(f"{key}: {value:.3f}")
print()
# Transcribe audio
segments = recognizer.transcribe_audio(
audio_input=args.audio_file,
language=args.language,
word_timestamps=not args.no_word_timestamps,
use_batching=not args.no_batching
)
# Output results
if args.output_format == "json":
result = {
"audio_file": args.audio_file,
"num_segments": len(segments),
"languages": list(set(seg.language for seg in segments)),
"total_duration": sum(seg.duration for seg in segments),
"segments": [seg.to_dict() for seg in segments]
}
print(json.dumps(result, indent=2, ensure_ascii=False))
elif args.output_format == "srt":
for i, segment in enumerate(segments, 1):
start_time = f"{int(segment.start_time//3600):02d}:{int((segment.start_time%3600)//60):02d}:{segment.start_time%60:06.3f}".replace('.', ',')
end_time = f"{int(segment.end_time//3600):02d}:{int((segment.end_time%3600)//60):02d}:{segment.end_time%60:06.3f}".replace('.', ',')
print(f"{i}")
print(f"{start_time} --> {end_time}")
print(f"{segment.text}")
print()
else: # text format
print(f"\n=== SPEECH RECOGNITION RESULTS ===")
print(f"Audio file: {args.audio_file}")
print(f"Model: {args.model_size}")
print(f"Device: {recognizer.device}")
print(f"Languages detected: {', '.join(set(seg.language for seg in segments))}")
print(f"Total segments: {len(segments)}")
print(f"Total speech duration: {sum(seg.duration for seg in segments):.1f}s")
print("\n--- Transcription ---")
for i, segment in enumerate(segments, 1):
speaker_info = f" [{segment.speaker_id}]" if segment.speaker_id else ""
print(f"#{i:2d} | {segment.start_time:7.1f}s - {segment.end_time:7.1f}s | "
f"({segment.language}){speaker_info}")
print(f" | {segment.text}")
if segment.word_timestamps and args.verbose:
print(" | Word timestamps:")
for word in segment.word_timestamps[:5]: # Show first 5 words
print(f" | '{word['word']}': {word['start']:.1f}s-{word['end']:.1f}s")
if len(segment.word_timestamps) > 5:
print(f" | ... and {len(segment.word_timestamps)-5} more words")
print()
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
# Run CLI if script is executed directly
if not FASTER_WHISPER_AVAILABLE:
print("Warning: faster-whisper not available. Install with: pip install faster-whisper")
print("Running in demo mode...")
# Create dummy segments for testing
dummy_segments = [
TranscriptionSegment(
start_time=0.0, end_time=3.5, text="Hello, how are you today?",
language="en", confidence=0.95,
word_timestamps=[
{"word": "Hello", "start": 0.0, "end": 0.5, "confidence": 0.99},
{"word": "how", "start": 1.0, "end": 1.2, "confidence": 0.98},
{"word": "are", "start": 1.3, "end": 1.5, "confidence": 0.97},
{"word": "you", "start": 1.6, "end": 1.9, "confidence": 0.98},
{"word": "today", "start": 2.5, "end": 3.2, "confidence": 0.96}
]
),
TranscriptionSegment(
start_time=4.0, end_time=7.8, text="Bonjour, comment allez-vous?",
language="fr", confidence=0.92
),
TranscriptionSegment(
start_time=8.5, end_time=12.1, text="मैं ठीक हूँ, धन्यवाद।",
language="hi", confidence=0.89
)
]
print("\n=== DEMO OUTPUT (faster-whisper not available) ===")
for i, segment in enumerate(dummy_segments, 1):
print(f"#{i} | {segment.start_time:.1f}s - {segment.end_time:.1f}s | "
f"({segment.language})")
print(f" | {segment.text}")
else:
main() |