File size: 38,250 Bytes
3f792e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 |
"""
Neural Machine Translation Module for Multilingual Audio Intelligence System
This module implements state-of-the-art neural machine translation using Helsinki-NLP/Opus-MT
models. Designed for efficient CPU-based translation with dynamic model loading and
intelligent batching strategies.
Key Features:
- Dynamic model loading for 100+ language pairs
- Helsinki-NLP/Opus-MT models (300MB each) for specific language pairs
- Intelligent batching for maximum CPU throughput
- Fallback to multilingual models (mBART, M2M-100) for rare languages
- Memory-efficient model management with automatic cleanup
- Robust error handling and translation confidence scoring
- Cache management for frequently used language pairs
Models: Helsinki-NLP/opus-mt-* series, Facebook mBART50, M2M-100
Dependencies: transformers, torch, sentencepiece
"""
import os
import logging
import warnings
import torch
from typing import List, Dict, Optional, Tuple, Union
import gc
from dataclasses import dataclass
from collections import defaultdict
import time
try:
from transformers import (
MarianMTModel, MarianTokenizer,
MBartForConditionalGeneration, MBart50TokenizerFast,
M2M100ForConditionalGeneration, M2M100Tokenizer,
pipeline
)
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
logging.warning("transformers not available. Install with: pip install transformers")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
@dataclass
class TranslationResult:
"""
Data class representing a translation result with metadata.
Attributes:
original_text (str): Original text in source language
translated_text (str): Translated text in target language
source_language (str): Source language code
target_language (str): Target language code
confidence (float): Translation confidence score
model_used (str): Name of the model used for translation
processing_time (float): Time taken for translation in seconds
"""
original_text: str
translated_text: str
source_language: str
target_language: str
confidence: float = 1.0
model_used: str = "unknown"
processing_time: float = 0.0
def to_dict(self) -> dict:
"""Convert to dictionary for JSON serialization."""
return {
'original_text': self.original_text,
'translated_text': self.translated_text,
'source_language': self.source_language,
'target_language': self.target_language,
'confidence': self.confidence,
'model_used': self.model_used,
'processing_time': self.processing_time
}
class NeuralTranslator:
"""
Advanced neural machine translation with dynamic model loading.
Supports 100+ languages through Helsinki-NLP/Opus-MT models with intelligent
fallback strategies and efficient memory management.
"""
def __init__(self,
target_language: str = "en",
device: Optional[str] = None,
cache_size: int = 3,
use_multilingual_fallback: bool = True,
model_cache_dir: Optional[str] = None):
"""
Initialize the Neural Translator.
Args:
target_language (str): Target language code (default: 'en' for English)
device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
cache_size (int): Maximum number of models to keep in memory
use_multilingual_fallback (bool): Use mBART/M2M-100 for unsupported pairs
model_cache_dir (str, optional): Directory to cache downloaded models
"""
self.target_language = target_language
self.cache_size = cache_size
self.use_multilingual_fallback = use_multilingual_fallback
self.model_cache_dir = model_cache_dir
# Device selection
if device == 'auto' or device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
logger.info(f"Initializing NeuralTranslator: target={target_language}, "
f"device={self.device}, cache_size={cache_size}")
# Model cache and management
self.model_cache = {} # {model_name: (model, tokenizer, last_used)}
self.fallback_model = None
self.fallback_tokenizer = None
self.fallback_model_name = None
# Language mapping for Helsinki-NLP models
self.language_mapping = self._get_language_mapping()
# Supported language pairs cache
self._supported_pairs_cache = None
# Initialize fallback model if requested
if use_multilingual_fallback:
self._load_fallback_model()
def _get_language_mapping(self) -> Dict[str, str]:
"""Get mapping of language codes to Helsinki-NLP model codes."""
# Common language mappings for Helsinki-NLP/Opus-MT
return {
'en': 'en', 'es': 'es', 'fr': 'fr', 'de': 'de', 'it': 'it', 'pt': 'pt',
'ru': 'ru', 'zh': 'zh', 'ja': 'ja', 'ko': 'ko', 'ar': 'ar', 'hi': 'hi',
'tr': 'tr', 'pl': 'pl', 'nl': 'nl', 'sv': 'sv', 'da': 'da', 'no': 'no',
'fi': 'fi', 'hu': 'hu', 'cs': 'cs', 'sk': 'sk', 'sl': 'sl', 'hr': 'hr',
'bg': 'bg', 'ro': 'ro', 'el': 'el', 'he': 'he', 'th': 'th', 'vi': 'vi',
'id': 'id', 'ms': 'ms', 'tl': 'tl', 'sw': 'sw', 'eu': 'eu', 'ca': 'ca',
'gl': 'gl', 'cy': 'cy', 'ga': 'ga', 'mt': 'mt', 'is': 'is', 'lv': 'lv',
'lt': 'lt', 'et': 'et', 'mk': 'mk', 'sq': 'sq', 'be': 'be', 'uk': 'uk',
'ka': 'ka', 'hy': 'hy', 'az': 'az', 'kk': 'kk', 'ky': 'ky', 'uz': 'uz',
'fa': 'fa', 'ur': 'ur', 'bn': 'bn', 'ta': 'ta', 'te': 'te', 'ml': 'ml',
'kn': 'kn', 'gu': 'gu', 'pa': 'pa', 'mr': 'mr', 'ne': 'ne', 'si': 'si',
'my': 'my', 'km': 'km', 'lo': 'lo', 'mn': 'mn', 'bo': 'bo'
}
def _load_fallback_model(self):
"""Load multilingual fallback model (mBART50 or M2M-100)."""
try:
# Try mBART50 first (smaller and faster)
logger.info("Loading mBART50 multilingual fallback model...")
self.fallback_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt",
cache_dir=self.model_cache_dir
).to(self.device)
self.fallback_tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt",
cache_dir=self.model_cache_dir
)
self.fallback_model_name = "mbart50"
logger.info("mBART50 fallback model loaded successfully")
except Exception as e:
logger.warning(f"Failed to load mBART50: {e}")
try:
# Fallback to M2M-100 (larger but more comprehensive)
logger.info("Loading M2M-100 multilingual fallback model...")
self.fallback_model = M2M100ForConditionalGeneration.from_pretrained(
"facebook/m2m100_418M",
cache_dir=self.model_cache_dir
).to(self.device)
self.fallback_tokenizer = M2M100Tokenizer.from_pretrained(
"facebook/m2m100_418M",
cache_dir=self.model_cache_dir
)
self.fallback_model_name = "m2m100"
logger.info("M2M-100 fallback model loaded successfully")
except Exception as e2:
logger.warning(f"Failed to load M2M-100: {e2}")
self.fallback_model = None
self.fallback_tokenizer = None
self.fallback_model_name = None
def translate_text(self,
text: str,
source_language: str,
target_language: Optional[str] = None) -> TranslationResult:
"""
Translate a single text segment.
Args:
text (str): Text to translate
source_language (str): Source language code
target_language (str, optional): Target language code (uses default if None)
Returns:
TranslationResult: Translation result with metadata
"""
if not text or not text.strip():
return TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_language or self.target_language,
confidence=0.0,
model_used="none",
processing_time=0.0
)
target_lang = target_language or self.target_language
# Skip translation if source equals target
if source_language == target_lang:
return TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_lang,
confidence=1.0,
model_used="identity",
processing_time=0.0
)
start_time = time.time()
try:
# Try Helsinki-NLP model first
model_name = self._get_model_name(source_language, target_lang)
if model_name:
result = self._translate_with_opus_mt(
text, source_language, target_lang, model_name
)
elif self.fallback_model:
result = self._translate_with_fallback(
text, source_language, target_lang
)
else:
# No translation available
result = TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_lang,
confidence=0.0,
model_used="unavailable",
processing_time=0.0
)
result.processing_time = time.time() - start_time
return result
except Exception as e:
logger.error(f"Translation failed: {e}")
return TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_lang,
confidence=0.0,
model_used="error",
processing_time=time.time() - start_time
)
def translate_batch(self,
texts: List[str],
source_languages: List[str],
target_language: Optional[str] = None,
batch_size: int = 8) -> List[TranslationResult]:
"""
Translate multiple texts efficiently using batching.
Args:
texts (List[str]): List of texts to translate
source_languages (List[str]): List of source language codes
target_language (str, optional): Target language code
batch_size (int): Batch size for processing
Returns:
List[TranslationResult]: List of translation results
"""
if len(texts) != len(source_languages):
raise ValueError("Number of texts must match number of source languages")
target_lang = target_language or self.target_language
results = []
# Group by language pair for efficient batching
language_groups = defaultdict(list)
for i, (text, src_lang) in enumerate(zip(texts, source_languages)):
if text and text.strip():
language_groups[(src_lang, target_lang)].append((i, text))
# Process each language group
for (src_lang, tgt_lang), items in language_groups.items():
if src_lang == tgt_lang:
# Identity translation
for idx, text in items:
results.append((idx, TranslationResult(
original_text=text,
translated_text=text,
source_language=src_lang,
target_language=tgt_lang,
confidence=1.0,
model_used="identity",
processing_time=0.0
)))
else:
# Translate in batches
for i in range(0, len(items), batch_size):
batch_items = items[i:i + batch_size]
batch_texts = [item[1] for item in batch_items]
batch_indices = [item[0] for item in batch_items]
batch_results = self._translate_batch_same_language(
batch_texts, src_lang, tgt_lang
)
for idx, result in zip(batch_indices, batch_results):
results.append((idx, result))
# Fill in empty texts and sort by original order
final_results = [None] * len(texts)
for idx, result in results:
final_results[idx] = result
# Handle empty texts
for i, result in enumerate(final_results):
if result is None:
final_results[i] = TranslationResult(
original_text=texts[i],
translated_text=texts[i],
source_language=source_languages[i],
target_language=target_lang,
confidence=0.0,
model_used="empty",
processing_time=0.0
)
return final_results
def _translate_batch_same_language(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate a batch of texts from the same source language."""
try:
model_name = self._get_model_name(source_language, target_language)
if model_name:
return self._translate_batch_opus_mt(
texts, source_language, target_language, model_name
)
elif self.fallback_model:
return self._translate_batch_fallback(
texts, source_language, target_language
)
else:
# No translation available
return [
TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_language,
confidence=0.0,
model_used="unavailable",
processing_time=0.0
)
for text in texts
]
except Exception as e:
logger.error(f"Batch translation failed: {e}")
return [
TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_language,
confidence=0.0,
model_used="error",
processing_time=0.0
)
for text in texts
]
def _get_model_name(self, source_lang: str, target_lang: str) -> Optional[str]:
"""Get Helsinki-NLP model name for language pair."""
# Map language codes
src_mapped = self.language_mapping.get(source_lang, source_lang)
tgt_mapped = self.language_mapping.get(target_lang, target_lang)
# Common Helsinki-NLP model patterns
model_patterns = [
f"Helsinki-NLP/opus-mt-{src_mapped}-{tgt_mapped}",
f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}",
f"Helsinki-NLP/opus-mt-{src_mapped}-{target_lang}",
f"Helsinki-NLP/opus-mt-{source_lang}-{tgt_mapped}"
]
# For specific language groups, try group models
if target_lang == 'en':
# Many-to-English models
group_patterns = [
f"Helsinki-NLP/opus-mt-mul-{target_lang}",
f"Helsinki-NLP/opus-mt-roa-{target_lang}", # Romance languages
f"Helsinki-NLP/opus-mt-gem-{target_lang}", # Germanic languages
f"Helsinki-NLP/opus-mt-sla-{target_lang}", # Slavic languages
]
model_patterns.extend(group_patterns)
# Return the first pattern (most specific)
return model_patterns[0] if model_patterns else None
def _load_opus_mt_model(self, model_name: str) -> Tuple[MarianMTModel, MarianTokenizer]:
"""Load Helsinki-NLP Opus-MT model with caching."""
current_time = time.time()
# Check if model is already in cache
if model_name in self.model_cache:
model, tokenizer, _ = self.model_cache[model_name]
# Update last used time
self.model_cache[model_name] = (model, tokenizer, current_time)
logger.debug(f"Using cached model: {model_name}")
return model, tokenizer
# Clean cache if it's full
if len(self.model_cache) >= self.cache_size:
self._clean_model_cache()
try:
logger.info(f"Loading model: {model_name}")
# Load model and tokenizer
model = MarianMTModel.from_pretrained(
model_name,
cache_dir=self.model_cache_dir
).to(self.device)
tokenizer = MarianTokenizer.from_pretrained(
model_name,
cache_dir=self.model_cache_dir
)
# Add to cache
self.model_cache[model_name] = (model, tokenizer, current_time)
logger.info(f"Model loaded and cached: {model_name}")
return model, tokenizer
except Exception as e:
logger.warning(f"Failed to load model {model_name}: {e}")
raise
def _clean_model_cache(self):
"""Remove least recently used model from cache."""
if not self.model_cache:
return
# Find least recently used model
lru_model = min(self.model_cache.items(), key=lambda x: x[1][2])
model_name = lru_model[0]
# Remove from cache and free memory
model, tokenizer, _ = self.model_cache.pop(model_name)
del model, tokenizer
# Force garbage collection
if self.device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
logger.debug(f"Removed model from cache: {model_name}")
def _translate_with_opus_mt(self,
text: str,
source_language: str,
target_language: str,
model_name: str) -> TranslationResult:
"""Translate text using Helsinki-NLP Opus-MT model."""
try:
model, tokenizer = self._load_opus_mt_model(model_name)
# Tokenize and translate
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=512,
num_beams=4,
early_stopping=True,
do_sample=False
)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return TranslationResult(
original_text=text,
translated_text=translated_text,
source_language=source_language,
target_language=target_language,
confidence=0.9, # Opus-MT models generally have good confidence
model_used=model_name
)
except Exception as e:
logger.error(f"Opus-MT translation failed: {e}")
raise
def _translate_batch_opus_mt(self,
texts: List[str],
source_language: str,
target_language: str,
model_name: str) -> List[TranslationResult]:
"""Translate batch using Helsinki-NLP Opus-MT model."""
try:
model, tokenizer = self._load_opus_mt_model(model_name)
# Tokenize batch
inputs = tokenizer(
texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=512,
num_beams=4,
early_stopping=True,
do_sample=False
)
# Decode all outputs
translated_texts = [
tokenizer.decode(output, skip_special_tokens=True)
for output in outputs
]
# Create results
results = []
for original, translated in zip(texts, translated_texts):
results.append(TranslationResult(
original_text=original,
translated_text=translated,
source_language=source_language,
target_language=target_language,
confidence=0.9,
model_used=model_name
))
return results
except Exception as e:
logger.error(f"Opus-MT batch translation failed: {e}")
raise
def _translate_with_fallback(self,
text: str,
source_language: str,
target_language: str) -> TranslationResult:
"""Translate using multilingual fallback model."""
try:
if self.fallback_model_name == "mbart50":
return self._translate_with_mbart50(text, source_language, target_language)
elif self.fallback_model_name == "m2m100":
return self._translate_with_m2m100(text, source_language, target_language)
else:
raise ValueError("No fallback model available")
except Exception as e:
logger.error(f"Fallback translation failed: {e}")
raise
def _translate_batch_fallback(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate batch using multilingual fallback model."""
try:
if self.fallback_model_name == "mbart50":
return self._translate_batch_mbart50(texts, source_language, target_language)
elif self.fallback_model_name == "m2m100":
return self._translate_batch_m2m100(texts, source_language, target_language)
else:
raise ValueError("No fallback model available")
except Exception as e:
logger.error(f"Fallback batch translation failed: {e}")
raise
def _translate_with_mbart50(self,
text: str,
source_language: str,
target_language: str) -> TranslationResult:
"""Translate using mBART50 model."""
# Set source language
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(text, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate translation
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.lang_code_to_id[target_language],
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return TranslationResult(
original_text=text,
translated_text=translated_text,
source_language=source_language,
target_language=target_language,
confidence=0.85,
model_used="mbart50"
)
def _translate_batch_mbart50(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate batch using mBART50 model."""
# Set source language
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(
texts, return_tensors="pt", padding=True, truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate translations
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.lang_code_to_id[target_language],
max_length=512,
num_beams=4,
early_stopping=True
)
translated_texts = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
return [
TranslationResult(
original_text=original,
translated_text=translated,
source_language=source_language,
target_language=target_language,
confidence=0.85,
model_used="mbart50"
)
for original, translated in zip(texts, translated_texts)
]
def _translate_with_m2m100(self,
text: str,
source_language: str,
target_language: str) -> TranslationResult:
"""Translate using M2M-100 model."""
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(text, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.get_lang_id(target_language),
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return TranslationResult(
original_text=text,
translated_text=translated_text,
source_language=source_language,
target_language=target_language,
confidence=0.87,
model_used="m2m100"
)
def _translate_batch_m2m100(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate batch using M2M-100 model."""
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(
texts, return_tensors="pt", padding=True, truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.get_lang_id(target_language),
max_length=512,
num_beams=4,
early_stopping=True
)
translated_texts = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
return [
TranslationResult(
original_text=original,
translated_text=translated,
source_language=source_language,
target_language=target_language,
confidence=0.87,
model_used="m2m100"
)
for original, translated in zip(texts, translated_texts)
]
def get_supported_languages(self) -> List[str]:
"""Get list of supported source languages."""
# Combined support from Helsinki-NLP and fallback models
opus_mt_languages = list(self.language_mapping.keys())
# mBART50 supported languages
mbart_languages = [
'ar', 'cs', 'de', 'en', 'es', 'et', 'fi', 'fr', 'gu', 'hi', 'it', 'ja',
'kk', 'ko', 'lt', 'lv', 'my', 'ne', 'nl', 'ro', 'ru', 'si', 'tr', 'vi',
'zh', 'af', 'az', 'bn', 'fa', 'he', 'hr', 'id', 'ka', 'km', 'mk', 'ml',
'mn', 'mr', 'pl', 'ps', 'pt', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'uk',
'ur', 'xh', 'gl', 'sl'
]
# M2M-100 has 100 languages, include major ones
m2m_additional = [
'am', 'cy', 'is', 'mg', 'mt', 'so', 'zu', 'ha', 'ig', 'yo', 'lg', 'ln',
'rn', 'sn', 'tn', 'ts', 've', 'xh', 'zu'
]
all_languages = set(opus_mt_languages + mbart_languages + m2m_additional)
return sorted(list(all_languages))
def clear_cache(self):
"""Clear all cached models to free memory."""
logger.info("Clearing model cache...")
for model_name, (model, tokenizer, _) in self.model_cache.items():
del model, tokenizer
self.model_cache.clear()
if self.device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
logger.info("Model cache cleared")
def get_cache_info(self) -> Dict[str, any]:
"""Get information about cached models."""
return {
'cached_models': list(self.model_cache.keys()),
'cache_size': len(self.model_cache),
'max_cache_size': self.cache_size,
'fallback_model': self.fallback_model_name,
'device': str(self.device)
}
def __del__(self):
"""Cleanup resources when the object is destroyed."""
try:
self.clear_cache()
except Exception:
pass
# Convenience function for easy usage
def translate_text(text: str,
source_language: str,
target_language: str = "en",
device: Optional[str] = None) -> TranslationResult:
"""
Convenience function to translate text with default settings.
Args:
text (str): Text to translate
source_language (str): Source language code
target_language (str): Target language code (default: 'en')
device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
Returns:
TranslationResult: Translation result
Example:
>>> # Translate from French to English
>>> result = translate_text("Bonjour le monde", "fr", "en")
>>> print(result.translated_text) # "Hello world"
>>>
>>> # Translate from Hindi to English
>>> result = translate_text("नमस्ते", "hi", "en")
>>> print(result.translated_text) # "Hello"
"""
translator = NeuralTranslator(
target_language=target_language,
device=device
)
return translator.translate_text(text, source_language, target_language)
# Example usage and testing
if __name__ == "__main__":
import sys
import argparse
import json
def main():
"""Command line interface for testing neural translation."""
parser = argparse.ArgumentParser(description="Neural Machine Translation Tool")
parser.add_argument("text", help="Text to translate")
parser.add_argument("--source-lang", "-s", required=True,
help="Source language code")
parser.add_argument("--target-lang", "-t", default="en",
help="Target language code (default: en)")
parser.add_argument("--device", choices=["cpu", "cuda", "auto"], default="auto",
help="Device to run on")
parser.add_argument("--batch-size", type=int, default=8,
help="Batch size for multiple texts")
parser.add_argument("--output-format", choices=["json", "text"],
default="text", help="Output format")
parser.add_argument("--list-languages", action="store_true",
help="List supported languages")
parser.add_argument("--benchmark", action="store_true",
help="Run translation benchmark")
parser.add_argument("--verbose", "-v", action="store_true",
help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
try:
translator = NeuralTranslator(
target_language=args.target_lang,
device=args.device
)
if args.list_languages:
languages = translator.get_supported_languages()
print("Supported languages:")
for i, lang in enumerate(languages):
print(f"{lang:>4}", end=" ")
if (i + 1) % 10 == 0:
print()
if len(languages) % 10 != 0:
print()
return
if args.benchmark:
print("=== TRANSLATION BENCHMARK ===")
test_texts = [
"Hello, how are you?",
"This is a longer sentence to test translation quality.",
"Machine translation has improved significantly."
]
start_time = time.time()
results = translator.translate_batch(
test_texts,
[args.source_lang] * len(test_texts),
args.target_lang
)
total_time = time.time() - start_time
print(f"Translated {len(test_texts)} texts in {total_time:.2f}s")
print(f"Average time per text: {total_time/len(test_texts):.3f}s")
print()
# Translate the input text
result = translator.translate_text(
args.text, args.source_lang, args.target_lang
)
# Output results
if args.output_format == "json":
print(json.dumps(result.to_dict(), indent=2, ensure_ascii=False))
else:
print(f"=== TRANSLATION RESULT ===")
print(f"Source ({result.source_language}): {result.original_text}")
print(f"Target ({result.target_language}): {result.translated_text}")
print(f"Model used: {result.model_used}")
print(f"Confidence: {result.confidence:.2f}")
print(f"Processing time: {result.processing_time:.3f}s")
if args.verbose:
cache_info = translator.get_cache_info()
print(f"\nCache info: {cache_info}")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
# Run CLI if script is executed directly
if not TRANSFORMERS_AVAILABLE:
print("Warning: transformers not available. Install with: pip install transformers")
print("Running in demo mode...")
# Create dummy result for testing
dummy_result = TranslationResult(
original_text="Bonjour le monde",
translated_text="Hello world",
source_language="fr",
target_language="en",
confidence=0.95,
model_used="demo",
processing_time=0.123
)
print("\n=== DEMO OUTPUT (transformers not available) ===")
print(f"Source (fr): {dummy_result.original_text}")
print(f"Target (en): {dummy_result.translated_text}")
print(f"Confidence: {dummy_result.confidence:.2f}")
else:
main() |