File size: 38,250 Bytes
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
"""
Neural Machine Translation Module for Multilingual Audio Intelligence System

This module implements state-of-the-art neural machine translation using Helsinki-NLP/Opus-MT
models. Designed for efficient CPU-based translation with dynamic model loading and
intelligent batching strategies.

Key Features:
- Dynamic model loading for 100+ language pairs
- Helsinki-NLP/Opus-MT models (300MB each) for specific language pairs
- Intelligent batching for maximum CPU throughput
- Fallback to multilingual models (mBART, M2M-100) for rare languages
- Memory-efficient model management with automatic cleanup
- Robust error handling and translation confidence scoring
- Cache management for frequently used language pairs

Models: Helsinki-NLP/opus-mt-* series, Facebook mBART50, M2M-100
Dependencies: transformers, torch, sentencepiece
"""

import os
import logging
import warnings
import torch
from typing import List, Dict, Optional, Tuple, Union
import gc
from dataclasses import dataclass
from collections import defaultdict
import time

try:
    from transformers import (
        MarianMTModel, MarianTokenizer, 
        MBartForConditionalGeneration, MBart50TokenizerFast,
        M2M100ForConditionalGeneration, M2M100Tokenizer,
        pipeline
    )
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False
    logging.warning("transformers not available. Install with: pip install transformers")

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)


@dataclass
class TranslationResult:
    """
    Data class representing a translation result with metadata.
    
    Attributes:
        original_text (str): Original text in source language
        translated_text (str): Translated text in target language
        source_language (str): Source language code
        target_language (str): Target language code
        confidence (float): Translation confidence score
        model_used (str): Name of the model used for translation
        processing_time (float): Time taken for translation in seconds
    """
    original_text: str
    translated_text: str
    source_language: str
    target_language: str
    confidence: float = 1.0
    model_used: str = "unknown"
    processing_time: float = 0.0
    
    def to_dict(self) -> dict:
        """Convert to dictionary for JSON serialization."""
        return {
            'original_text': self.original_text,
            'translated_text': self.translated_text,
            'source_language': self.source_language,
            'target_language': self.target_language,
            'confidence': self.confidence,
            'model_used': self.model_used,
            'processing_time': self.processing_time
        }


class NeuralTranslator:
    """
    Advanced neural machine translation with dynamic model loading.
    
    Supports 100+ languages through Helsinki-NLP/Opus-MT models with intelligent
    fallback strategies and efficient memory management.
    """
    
    def __init__(self,
                 target_language: str = "en",
                 device: Optional[str] = None,
                 cache_size: int = 3,
                 use_multilingual_fallback: bool = True,
                 model_cache_dir: Optional[str] = None):
        """
        Initialize the Neural Translator.
        
        Args:
            target_language (str): Target language code (default: 'en' for English)
            device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
            cache_size (int): Maximum number of models to keep in memory
            use_multilingual_fallback (bool): Use mBART/M2M-100 for unsupported pairs
            model_cache_dir (str, optional): Directory to cache downloaded models
        """
        self.target_language = target_language
        self.cache_size = cache_size
        self.use_multilingual_fallback = use_multilingual_fallback
        self.model_cache_dir = model_cache_dir
        
        # Device selection
        if device == 'auto' or device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = torch.device(device)
        
        logger.info(f"Initializing NeuralTranslator: target={target_language}, "
                   f"device={self.device}, cache_size={cache_size}")
        
        # Model cache and management
        self.model_cache = {}  # {model_name: (model, tokenizer, last_used)}
        self.fallback_model = None
        self.fallback_tokenizer = None
        self.fallback_model_name = None
        
        # Language mapping for Helsinki-NLP models
        self.language_mapping = self._get_language_mapping()
        
        # Supported language pairs cache
        self._supported_pairs_cache = None
        
        # Initialize fallback model if requested
        if use_multilingual_fallback:
            self._load_fallback_model()
    
    def _get_language_mapping(self) -> Dict[str, str]:
        """Get mapping of language codes to Helsinki-NLP model codes."""
        # Common language mappings for Helsinki-NLP/Opus-MT
        return {
            'en': 'en', 'es': 'es', 'fr': 'fr', 'de': 'de', 'it': 'it', 'pt': 'pt',
            'ru': 'ru', 'zh': 'zh', 'ja': 'ja', 'ko': 'ko', 'ar': 'ar', 'hi': 'hi',
            'tr': 'tr', 'pl': 'pl', 'nl': 'nl', 'sv': 'sv', 'da': 'da', 'no': 'no',
            'fi': 'fi', 'hu': 'hu', 'cs': 'cs', 'sk': 'sk', 'sl': 'sl', 'hr': 'hr',
            'bg': 'bg', 'ro': 'ro', 'el': 'el', 'he': 'he', 'th': 'th', 'vi': 'vi',
            'id': 'id', 'ms': 'ms', 'tl': 'tl', 'sw': 'sw', 'eu': 'eu', 'ca': 'ca',
            'gl': 'gl', 'cy': 'cy', 'ga': 'ga', 'mt': 'mt', 'is': 'is', 'lv': 'lv',
            'lt': 'lt', 'et': 'et', 'mk': 'mk', 'sq': 'sq', 'be': 'be', 'uk': 'uk',
            'ka': 'ka', 'hy': 'hy', 'az': 'az', 'kk': 'kk', 'ky': 'ky', 'uz': 'uz',
            'fa': 'fa', 'ur': 'ur', 'bn': 'bn', 'ta': 'ta', 'te': 'te', 'ml': 'ml',
            'kn': 'kn', 'gu': 'gu', 'pa': 'pa', 'mr': 'mr', 'ne': 'ne', 'si': 'si',
            'my': 'my', 'km': 'km', 'lo': 'lo', 'mn': 'mn', 'bo': 'bo'
        }
    
    def _load_fallback_model(self):
        """Load multilingual fallback model (mBART50 or M2M-100)."""
        try:
            # Try mBART50 first (smaller and faster)
            logger.info("Loading mBART50 multilingual fallback model...")
            
            self.fallback_model = MBartForConditionalGeneration.from_pretrained(
                "facebook/mbart-large-50-many-to-many-mmt",
                cache_dir=self.model_cache_dir
            ).to(self.device)
            
            self.fallback_tokenizer = MBart50TokenizerFast.from_pretrained(
                "facebook/mbart-large-50-many-to-many-mmt",
                cache_dir=self.model_cache_dir
            )
            
            self.fallback_model_name = "mbart50"
            logger.info("mBART50 fallback model loaded successfully")
            
        except Exception as e:
            logger.warning(f"Failed to load mBART50: {e}")
            
            try:
                # Fallback to M2M-100 (larger but more comprehensive)
                logger.info("Loading M2M-100 multilingual fallback model...")
                
                self.fallback_model = M2M100ForConditionalGeneration.from_pretrained(
                    "facebook/m2m100_418M",
                    cache_dir=self.model_cache_dir
                ).to(self.device)
                
                self.fallback_tokenizer = M2M100Tokenizer.from_pretrained(
                    "facebook/m2m100_418M",
                    cache_dir=self.model_cache_dir
                )
                
                self.fallback_model_name = "m2m100"
                logger.info("M2M-100 fallback model loaded successfully")
                
            except Exception as e2:
                logger.warning(f"Failed to load M2M-100: {e2}")
                self.fallback_model = None
                self.fallback_tokenizer = None
                self.fallback_model_name = None
    
    def translate_text(self,
                      text: str,
                      source_language: str,
                      target_language: Optional[str] = None) -> TranslationResult:
        """
        Translate a single text segment.
        
        Args:
            text (str): Text to translate
            source_language (str): Source language code
            target_language (str, optional): Target language code (uses default if None)
            
        Returns:
            TranslationResult: Translation result with metadata
        """
        if not text or not text.strip():
            return TranslationResult(
                original_text=text,
                translated_text=text,
                source_language=source_language,
                target_language=target_language or self.target_language,
                confidence=0.0,
                model_used="none",
                processing_time=0.0
            )
        
        target_lang = target_language or self.target_language
        
        # Skip translation if source equals target
        if source_language == target_lang:
            return TranslationResult(
                original_text=text,
                translated_text=text,
                source_language=source_language,
                target_language=target_lang,
                confidence=1.0,
                model_used="identity",
                processing_time=0.0
            )
        
        start_time = time.time()
        
        try:
            # Try Helsinki-NLP model first
            model_name = self._get_model_name(source_language, target_lang)
            
            if model_name:
                result = self._translate_with_opus_mt(
                    text, source_language, target_lang, model_name
                )
            elif self.fallback_model:
                result = self._translate_with_fallback(
                    text, source_language, target_lang
                )
            else:
                # No translation available
                result = TranslationResult(
                    original_text=text,
                    translated_text=text,
                    source_language=source_language,
                    target_language=target_lang,
                    confidence=0.0,
                    model_used="unavailable",
                    processing_time=0.0
                )
            
            result.processing_time = time.time() - start_time
            return result
            
        except Exception as e:
            logger.error(f"Translation failed: {e}")
            return TranslationResult(
                original_text=text,
                translated_text=text,
                source_language=source_language,
                target_language=target_lang,
                confidence=0.0,
                model_used="error",
                processing_time=time.time() - start_time
            )
    
    def translate_batch(self,
                       texts: List[str],
                       source_languages: List[str],
                       target_language: Optional[str] = None,
                       batch_size: int = 8) -> List[TranslationResult]:
        """
        Translate multiple texts efficiently using batching.
        
        Args:
            texts (List[str]): List of texts to translate
            source_languages (List[str]): List of source language codes
            target_language (str, optional): Target language code
            batch_size (int): Batch size for processing
            
        Returns:
            List[TranslationResult]: List of translation results
        """
        if len(texts) != len(source_languages):
            raise ValueError("Number of texts must match number of source languages")
        
        target_lang = target_language or self.target_language
        results = []
        
        # Group by language pair for efficient batching
        language_groups = defaultdict(list)
        for i, (text, src_lang) in enumerate(zip(texts, source_languages)):
            if text and text.strip():
                language_groups[(src_lang, target_lang)].append((i, text))
        
        # Process each language group
        for (src_lang, tgt_lang), items in language_groups.items():
            if src_lang == tgt_lang:
                # Identity translation
                for idx, text in items:
                    results.append((idx, TranslationResult(
                        original_text=text,
                        translated_text=text,
                        source_language=src_lang,
                        target_language=tgt_lang,
                        confidence=1.0,
                        model_used="identity",
                        processing_time=0.0
                    )))
            else:
                # Translate in batches
                for i in range(0, len(items), batch_size):
                    batch_items = items[i:i + batch_size]
                    batch_texts = [item[1] for item in batch_items]
                    batch_indices = [item[0] for item in batch_items]
                    
                    batch_results = self._translate_batch_same_language(
                        batch_texts, src_lang, tgt_lang
                    )
                    
                    for idx, result in zip(batch_indices, batch_results):
                        results.append((idx, result))
        
        # Fill in empty texts and sort by original order
        final_results = [None] * len(texts)
        for idx, result in results:
            final_results[idx] = result
        
        # Handle empty texts
        for i, result in enumerate(final_results):
            if result is None:
                final_results[i] = TranslationResult(
                    original_text=texts[i],
                    translated_text=texts[i],
                    source_language=source_languages[i],
                    target_language=target_lang,
                    confidence=0.0,
                    model_used="empty",
                    processing_time=0.0
                )
        
        return final_results
    
    def _translate_batch_same_language(self,
                                     texts: List[str],
                                     source_language: str,
                                     target_language: str) -> List[TranslationResult]:
        """Translate a batch of texts from the same source language."""
        try:
            model_name = self._get_model_name(source_language, target_language)
            
            if model_name:
                return self._translate_batch_opus_mt(
                    texts, source_language, target_language, model_name
                )
            elif self.fallback_model:
                return self._translate_batch_fallback(
                    texts, source_language, target_language
                )
            else:
                # No translation available
                return [
                    TranslationResult(
                        original_text=text,
                        translated_text=text,
                        source_language=source_language,
                        target_language=target_language,
                        confidence=0.0,
                        model_used="unavailable",
                        processing_time=0.0
                    )
                    for text in texts
                ]
                
        except Exception as e:
            logger.error(f"Batch translation failed: {e}")
            return [
                TranslationResult(
                    original_text=text,
                    translated_text=text,
                    source_language=source_language,
                    target_language=target_language,
                    confidence=0.0,
                    model_used="error",
                    processing_time=0.0
                )
                for text in texts
            ]
    
    def _get_model_name(self, source_lang: str, target_lang: str) -> Optional[str]:
        """Get Helsinki-NLP model name for language pair."""
        # Map language codes
        src_mapped = self.language_mapping.get(source_lang, source_lang)
        tgt_mapped = self.language_mapping.get(target_lang, target_lang)
        
        # Common Helsinki-NLP model patterns
        model_patterns = [
            f"Helsinki-NLP/opus-mt-{src_mapped}-{tgt_mapped}",
            f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}",
            f"Helsinki-NLP/opus-mt-{src_mapped}-{target_lang}",
            f"Helsinki-NLP/opus-mt-{source_lang}-{tgt_mapped}"
        ]
        
        # For specific language groups, try group models
        if target_lang == 'en':
            # Many-to-English models
            group_patterns = [
                f"Helsinki-NLP/opus-mt-mul-{target_lang}",
                f"Helsinki-NLP/opus-mt-roa-{target_lang}",  # Romance languages
                f"Helsinki-NLP/opus-mt-gem-{target_lang}",  # Germanic languages
                f"Helsinki-NLP/opus-mt-sla-{target_lang}",  # Slavic languages
            ]
            model_patterns.extend(group_patterns)
        
        # Return the first pattern (most specific)
        return model_patterns[0] if model_patterns else None
    
    def _load_opus_mt_model(self, model_name: str) -> Tuple[MarianMTModel, MarianTokenizer]:
        """Load Helsinki-NLP Opus-MT model with caching."""
        current_time = time.time()
        
        # Check if model is already in cache
        if model_name in self.model_cache:
            model, tokenizer, _ = self.model_cache[model_name]
            # Update last used time
            self.model_cache[model_name] = (model, tokenizer, current_time)
            logger.debug(f"Using cached model: {model_name}")
            return model, tokenizer
        
        # Clean cache if it's full
        if len(self.model_cache) >= self.cache_size:
            self._clean_model_cache()
        
        try:
            logger.info(f"Loading model: {model_name}")
            
            # Load model and tokenizer
            model = MarianMTModel.from_pretrained(
                model_name,
                cache_dir=self.model_cache_dir
            ).to(self.device)
            
            tokenizer = MarianTokenizer.from_pretrained(
                model_name,
                cache_dir=self.model_cache_dir
            )
            
            # Add to cache
            self.model_cache[model_name] = (model, tokenizer, current_time)
            logger.info(f"Model loaded and cached: {model_name}")
            
            return model, tokenizer
            
        except Exception as e:
            logger.warning(f"Failed to load model {model_name}: {e}")
            raise
    
    def _clean_model_cache(self):
        """Remove least recently used model from cache."""
        if not self.model_cache:
            return
        
        # Find least recently used model
        lru_model = min(self.model_cache.items(), key=lambda x: x[1][2])
        model_name = lru_model[0]
        
        # Remove from cache and free memory
        model, tokenizer, _ = self.model_cache.pop(model_name)
        del model, tokenizer
        
        # Force garbage collection
        if self.device.type == 'cuda':
            torch.cuda.empty_cache()
        gc.collect()
        
        logger.debug(f"Removed model from cache: {model_name}")
    
    def _translate_with_opus_mt(self,
                              text: str,
                              source_language: str,
                              target_language: str,
                              model_name: str) -> TranslationResult:
        """Translate text using Helsinki-NLP Opus-MT model."""
        try:
            model, tokenizer = self._load_opus_mt_model(model_name)
            
            # Tokenize and translate
            inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                outputs = model.generate(
                    **inputs,
                    max_length=512,
                    num_beams=4,
                    early_stopping=True,
                    do_sample=False
                )
            
            translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            return TranslationResult(
                original_text=text,
                translated_text=translated_text,
                source_language=source_language,
                target_language=target_language,
                confidence=0.9,  # Opus-MT models generally have good confidence
                model_used=model_name
            )
            
        except Exception as e:
            logger.error(f"Opus-MT translation failed: {e}")
            raise
    
    def _translate_batch_opus_mt(self,
                               texts: List[str],
                               source_language: str,
                               target_language: str,
                               model_name: str) -> List[TranslationResult]:
        """Translate batch using Helsinki-NLP Opus-MT model."""
        try:
            model, tokenizer = self._load_opus_mt_model(model_name)
            
            # Tokenize batch
            inputs = tokenizer(
                texts, 
                return_tensors="pt", 
                padding=True, 
                truncation=True,
                max_length=512
            )
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                outputs = model.generate(
                    **inputs,
                    max_length=512,
                    num_beams=4,
                    early_stopping=True,
                    do_sample=False
                )
            
            # Decode all outputs
            translated_texts = [
                tokenizer.decode(output, skip_special_tokens=True)
                for output in outputs
            ]
            
            # Create results
            results = []
            for original, translated in zip(texts, translated_texts):
                results.append(TranslationResult(
                    original_text=original,
                    translated_text=translated,
                    source_language=source_language,
                    target_language=target_language,
                    confidence=0.9,
                    model_used=model_name
                ))
            
            return results
            
        except Exception as e:
            logger.error(f"Opus-MT batch translation failed: {e}")
            raise
    
    def _translate_with_fallback(self,
                               text: str,
                               source_language: str,
                               target_language: str) -> TranslationResult:
        """Translate using multilingual fallback model."""
        try:
            if self.fallback_model_name == "mbart50":
                return self._translate_with_mbart50(text, source_language, target_language)
            elif self.fallback_model_name == "m2m100":
                return self._translate_with_m2m100(text, source_language, target_language)
            else:
                raise ValueError("No fallback model available")
                
        except Exception as e:
            logger.error(f"Fallback translation failed: {e}")
            raise
    
    def _translate_batch_fallback(self,
                                texts: List[str],
                                source_language: str,
                                target_language: str) -> List[TranslationResult]:
        """Translate batch using multilingual fallback model."""
        try:
            if self.fallback_model_name == "mbart50":
                return self._translate_batch_mbart50(texts, source_language, target_language)
            elif self.fallback_model_name == "m2m100":
                return self._translate_batch_m2m100(texts, source_language, target_language)
            else:
                raise ValueError("No fallback model available")
                
        except Exception as e:
            logger.error(f"Fallback batch translation failed: {e}")
            raise
    
    def _translate_with_mbart50(self,
                              text: str,
                              source_language: str,
                              target_language: str) -> TranslationResult:
        """Translate using mBART50 model."""
        # Set source language
        self.fallback_tokenizer.src_lang = source_language
        
        inputs = self.fallback_tokenizer(text, return_tensors="pt")
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        
        # Generate translation
        with torch.no_grad():
            generated_tokens = self.fallback_model.generate(
                **inputs,
                forced_bos_token_id=self.fallback_tokenizer.lang_code_to_id[target_language],
                max_length=512,
                num_beams=4,
                early_stopping=True
            )
        
        translated_text = self.fallback_tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
        )[0]
        
        return TranslationResult(
            original_text=text,
            translated_text=translated_text,
            source_language=source_language,
            target_language=target_language,
            confidence=0.85,
            model_used="mbart50"
        )
    
    def _translate_batch_mbart50(self,
                               texts: List[str],
                               source_language: str,
                               target_language: str) -> List[TranslationResult]:
        """Translate batch using mBART50 model."""
        # Set source language
        self.fallback_tokenizer.src_lang = source_language
        
        inputs = self.fallback_tokenizer(
            texts, return_tensors="pt", padding=True, truncation=True
        )
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        
        # Generate translations
        with torch.no_grad():
            generated_tokens = self.fallback_model.generate(
                **inputs,
                forced_bos_token_id=self.fallback_tokenizer.lang_code_to_id[target_language],
                max_length=512,
                num_beams=4,
                early_stopping=True
            )
        
        translated_texts = self.fallback_tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
        )
        
        return [
            TranslationResult(
                original_text=original,
                translated_text=translated,
                source_language=source_language,
                target_language=target_language,
                confidence=0.85,
                model_used="mbart50"
            )
            for original, translated in zip(texts, translated_texts)
        ]
    
    def _translate_with_m2m100(self,
                             text: str,
                             source_language: str,
                             target_language: str) -> TranslationResult:
        """Translate using M2M-100 model."""
        self.fallback_tokenizer.src_lang = source_language
        
        inputs = self.fallback_tokenizer(text, return_tensors="pt")
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        
        with torch.no_grad():
            generated_tokens = self.fallback_model.generate(
                **inputs,
                forced_bos_token_id=self.fallback_tokenizer.get_lang_id(target_language),
                max_length=512,
                num_beams=4,
                early_stopping=True
            )
        
        translated_text = self.fallback_tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
        )[0]
        
        return TranslationResult(
            original_text=text,
            translated_text=translated_text,
            source_language=source_language,
            target_language=target_language,
            confidence=0.87,
            model_used="m2m100"
        )
    
    def _translate_batch_m2m100(self,
                              texts: List[str],
                              source_language: str,
                              target_language: str) -> List[TranslationResult]:
        """Translate batch using M2M-100 model."""
        self.fallback_tokenizer.src_lang = source_language
        
        inputs = self.fallback_tokenizer(
            texts, return_tensors="pt", padding=True, truncation=True
        )
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        
        with torch.no_grad():
            generated_tokens = self.fallback_model.generate(
                **inputs,
                forced_bos_token_id=self.fallback_tokenizer.get_lang_id(target_language),
                max_length=512,
                num_beams=4,
                early_stopping=True
            )
        
        translated_texts = self.fallback_tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
        )
        
        return [
            TranslationResult(
                original_text=original,
                translated_text=translated,
                source_language=source_language,
                target_language=target_language,
                confidence=0.87,
                model_used="m2m100"
            )
            for original, translated in zip(texts, translated_texts)
        ]
    
    def get_supported_languages(self) -> List[str]:
        """Get list of supported source languages."""
        # Combined support from Helsinki-NLP and fallback models
        opus_mt_languages = list(self.language_mapping.keys())
        
        # mBART50 supported languages
        mbart_languages = [
            'ar', 'cs', 'de', 'en', 'es', 'et', 'fi', 'fr', 'gu', 'hi', 'it', 'ja',
            'kk', 'ko', 'lt', 'lv', 'my', 'ne', 'nl', 'ro', 'ru', 'si', 'tr', 'vi',
            'zh', 'af', 'az', 'bn', 'fa', 'he', 'hr', 'id', 'ka', 'km', 'mk', 'ml',
            'mn', 'mr', 'pl', 'ps', 'pt', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'uk',
            'ur', 'xh', 'gl', 'sl'
        ]
        
        # M2M-100 has 100 languages, include major ones
        m2m_additional = [
            'am', 'cy', 'is', 'mg', 'mt', 'so', 'zu', 'ha', 'ig', 'yo', 'lg', 'ln',
            'rn', 'sn', 'tn', 'ts', 've', 'xh', 'zu'
        ]
        
        all_languages = set(opus_mt_languages + mbart_languages + m2m_additional)
        return sorted(list(all_languages))
    
    def clear_cache(self):
        """Clear all cached models to free memory."""
        logger.info("Clearing model cache...")
        
        for model_name, (model, tokenizer, _) in self.model_cache.items():
            del model, tokenizer
        
        self.model_cache.clear()
        
        if self.device.type == 'cuda':
            torch.cuda.empty_cache()
        gc.collect()
        
        logger.info("Model cache cleared")
    
    def get_cache_info(self) -> Dict[str, any]:
        """Get information about cached models."""
        return {
            'cached_models': list(self.model_cache.keys()),
            'cache_size': len(self.model_cache),
            'max_cache_size': self.cache_size,
            'fallback_model': self.fallback_model_name,
            'device': str(self.device)
        }
    
    def __del__(self):
        """Cleanup resources when the object is destroyed."""
        try:
            self.clear_cache()
        except Exception:
            pass


# Convenience function for easy usage
def translate_text(text: str,
                  source_language: str,
                  target_language: str = "en",
                  device: Optional[str] = None) -> TranslationResult:
    """
    Convenience function to translate text with default settings.
    
    Args:
        text (str): Text to translate
        source_language (str): Source language code
        target_language (str): Target language code (default: 'en')
        device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
        
    Returns:
        TranslationResult: Translation result
        
    Example:
        >>> # Translate from French to English
        >>> result = translate_text("Bonjour le monde", "fr", "en")
        >>> print(result.translated_text)  # "Hello world"
        >>> 
        >>> # Translate from Hindi to English
        >>> result = translate_text("नमस्ते", "hi", "en")
        >>> print(result.translated_text)  # "Hello"
    """
    translator = NeuralTranslator(
        target_language=target_language,
        device=device
    )
    
    return translator.translate_text(text, source_language, target_language)


# Example usage and testing
if __name__ == "__main__":
    import sys
    import argparse
    import json
    
    def main():
        """Command line interface for testing neural translation."""
        parser = argparse.ArgumentParser(description="Neural Machine Translation Tool")
        parser.add_argument("text", help="Text to translate")
        parser.add_argument("--source-lang", "-s", required=True,
                          help="Source language code")
        parser.add_argument("--target-lang", "-t", default="en",
                          help="Target language code (default: en)")
        parser.add_argument("--device", choices=["cpu", "cuda", "auto"], default="auto",
                          help="Device to run on")
        parser.add_argument("--batch-size", type=int, default=8,
                          help="Batch size for multiple texts")
        parser.add_argument("--output-format", choices=["json", "text"],
                          default="text", help="Output format")
        parser.add_argument("--list-languages", action="store_true",
                          help="List supported languages")
        parser.add_argument("--benchmark", action="store_true",
                          help="Run translation benchmark")
        parser.add_argument("--verbose", "-v", action="store_true",
                          help="Enable verbose logging")
        
        args = parser.parse_args()
        
        if args.verbose:
            logging.getLogger().setLevel(logging.DEBUG)
        
        try:
            translator = NeuralTranslator(
                target_language=args.target_lang,
                device=args.device
            )
            
            if args.list_languages:
                languages = translator.get_supported_languages()
                print("Supported languages:")
                for i, lang in enumerate(languages):
                    print(f"{lang:>4}", end="  ")
                    if (i + 1) % 10 == 0:
                        print()
                if len(languages) % 10 != 0:
                    print()
                return
            
            if args.benchmark:
                print("=== TRANSLATION BENCHMARK ===")
                test_texts = [
                    "Hello, how are you?",
                    "This is a longer sentence to test translation quality.",
                    "Machine translation has improved significantly."
                ]
                
                start_time = time.time()
                results = translator.translate_batch(
                    test_texts,
                    [args.source_lang] * len(test_texts),
                    args.target_lang
                )
                total_time = time.time() - start_time
                
                print(f"Translated {len(test_texts)} texts in {total_time:.2f}s")
                print(f"Average time per text: {total_time/len(test_texts):.3f}s")
                print()
            
            # Translate the input text
            result = translator.translate_text(
                args.text, args.source_lang, args.target_lang
            )
            
            # Output results
            if args.output_format == "json":
                print(json.dumps(result.to_dict(), indent=2, ensure_ascii=False))
            else:
                print(f"=== TRANSLATION RESULT ===")
                print(f"Source ({result.source_language}): {result.original_text}")
                print(f"Target ({result.target_language}): {result.translated_text}")
                print(f"Model used: {result.model_used}")
                print(f"Confidence: {result.confidence:.2f}")
                print(f"Processing time: {result.processing_time:.3f}s")
                
                if args.verbose:
                    cache_info = translator.get_cache_info()
                    print(f"\nCache info: {cache_info}")
        
        except Exception as e:
            print(f"Error: {e}", file=sys.stderr)
            sys.exit(1)
    
    # Run CLI if script is executed directly
    if not TRANSFORMERS_AVAILABLE:
        print("Warning: transformers not available. Install with: pip install transformers")
        print("Running in demo mode...")
        
        # Create dummy result for testing
        dummy_result = TranslationResult(
            original_text="Bonjour le monde",
            translated_text="Hello world",
            source_language="fr",
            target_language="en",
            confidence=0.95,
            model_used="demo",
            processing_time=0.123
        )
        
        print("\n=== DEMO OUTPUT (transformers not available) ===")
        print(f"Source (fr): {dummy_result.original_text}")
        print(f"Target (en): {dummy_result.translated_text}")
        print(f"Confidence: {dummy_result.confidence:.2f}")
    else:
        main()