File size: 25,686 Bytes
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
"""
Advanced Visualization Components for Multilingual Audio Intelligence System

This module provides sophisticated visualization components for creating
interactive audio analysis interfaces. Features include waveform visualization,
speaker timelines, and processing feedback displays.

Key Features:
- Interactive waveform with speaker segment overlays
- Speaker activity timeline visualization
- Processing progress indicators
- Exportable visualizations

Dependencies: plotly, matplotlib, numpy
"""

import numpy as np
import logging
from typing import List, Dict, Optional, Tuple, Any
import base64
import io
from datetime import datetime
import json

# Safe imports with fallbacks
try:
    import plotly.graph_objects as go
    import plotly.express as px
    from plotly.subplots import make_subplots
    PLOTLY_AVAILABLE = True
except ImportError:
    PLOTLY_AVAILABLE = False
    logging.warning("Plotly not available. Some visualizations will be limited.")

try:
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    MATPLOTLIB_AVAILABLE = True
except ImportError:
    MATPLOTLIB_AVAILABLE = False
    logging.warning("Matplotlib not available. Fallback visualizations will be used.")

logger = logging.getLogger(__name__)


class WaveformVisualizer:
    """Advanced waveform visualization with speaker overlays."""
    
    def __init__(self, width: int = 1000, height: int = 300):
        self.width = width
        self.height = height
        self.colors = [
            '#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7',
            '#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9'
        ]
    
    def create_interactive_waveform(self, 
                                  audio_data: np.ndarray,
                                  sample_rate: int,
                                  speaker_segments: List[Dict],
                                  transcription_segments: List[Dict] = None):
        """
        Create interactive waveform visualization with speaker overlays.
        
        Args:
            audio_data: Audio waveform data
            sample_rate: Audio sample rate
            speaker_segments: List of speaker segment dicts
            transcription_segments: Optional transcription data
            
        Returns:
            plotly.graph_objects.Figure: Plotly figure object
        """
        if not PLOTLY_AVAILABLE:
            return self._create_fallback_visualization(audio_data, sample_rate, speaker_segments)
        
        try:
            # Create time axis
            time_axis = np.linspace(0, len(audio_data) / sample_rate, len(audio_data))
            
            # Downsample for visualization if needed
            if len(audio_data) > 50000:
                step = len(audio_data) // 50000
                audio_data = audio_data[::step]
                time_axis = time_axis[::step]
            
            # Create the main plot
            fig = make_subplots(
                rows=2, cols=1,
                row_heights=[0.7, 0.3],
                subplot_titles=("Audio Waveform with Speaker Segments", "Speaker Timeline"),
                vertical_spacing=0.1
            )
            
            # Add waveform
            fig.add_trace(
                go.Scatter(
                    x=time_axis,
                    y=audio_data,
                    mode='lines',
                    name='Waveform',
                    line=dict(color='#2C3E50', width=1),
                    hovertemplate='Time: %{x:.2f}s<br>Amplitude: %{y:.3f}<extra></extra>'
                ),
                row=1, col=1
            )
            
            # Add speaker segment overlays
            speaker_colors = {}
            for i, segment in enumerate(speaker_segments):
                speaker_id = segment.get('speaker_id', f'Speaker_{i}')
                
                if speaker_id not in speaker_colors:
                    speaker_colors[speaker_id] = self.colors[len(speaker_colors) % len(self.colors)]
                
                # Add shaded region for speaker segment
                fig.add_vrect(
                    x0=segment['start_time'],
                    x1=segment['end_time'],
                    fillcolor=speaker_colors[speaker_id],
                    opacity=0.3,
                    layer="below",
                    line_width=0,
                    row=1, col=1
                )
                
                # Add speaker label
                mid_time = (segment['start_time'] + segment['end_time']) / 2
                if len(audio_data) > 0:
                    fig.add_annotation(
                        x=mid_time,
                        y=max(audio_data) * 0.8,
                        text=speaker_id.replace('SPEAKER_', 'S'),
                        showarrow=False,
                        font=dict(color=speaker_colors[speaker_id], size=10, family="Arial Black"),
                        row=1, col=1
                    )
            
            # Create speaker timeline in bottom subplot
            for i, (speaker_id, color) in enumerate(speaker_colors.items()):
                speaker_segments_filtered = [s for s in speaker_segments if s['speaker_id'] == speaker_id]
                
                for segment in speaker_segments_filtered:
                    fig.add_trace(
                        go.Scatter(
                            x=[segment['start_time'], segment['end_time']],
                            y=[i, i],
                            mode='lines',
                            name=speaker_id,
                            line=dict(color=color, width=8),
                            showlegend=(segment == speaker_segments_filtered[0]),
                            hovertemplate=f'{speaker_id}<br>%{{x:.2f}}s<extra></extra>'
                        ),
                        row=2, col=1
                    )
            
            # Update layout
            fig.update_layout(
                title=dict(
                    text="🎡 Multilingual Audio Intelligence Visualization",
                    font=dict(size=20, family="Arial Black"),
                    x=0.5
                ),
                height=600,
                hovermode='x unified',
                showlegend=True,
                legend=dict(
                    orientation="h",
                    yanchor="bottom",
                    y=1.02,
                    xanchor="right",
                    x=1
                ),
                plot_bgcolor='white',
                paper_bgcolor='#F8F9FA'
            )
            
            fig.update_xaxes(title_text="Time (seconds)", row=2, col=1)
            fig.update_yaxes(title_text="Amplitude", row=1, col=1)
            if speaker_colors:
                fig.update_yaxes(title_text="Speaker", row=2, col=1, 
                               ticktext=list(speaker_colors.keys()), 
                               tickvals=list(range(len(speaker_colors))))
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating waveform visualization: {e}")
            return self._create_fallback_visualization(audio_data, sample_rate, speaker_segments)
    
    def _create_fallback_visualization(self, audio_data, sample_rate, speaker_segments):
        """Create a simple fallback visualization when Plotly is not available."""
        if PLOTLY_AVAILABLE:
            fig = go.Figure()
            fig.add_annotation(
                text="Waveform visualization temporarily unavailable",
                x=0.5, y=0.5, showarrow=False,
                font=dict(size=16, color="gray")
            )
            fig.update_layout(
                title="Audio Waveform Visualization",
                xaxis_title="Time (seconds)",
                yaxis_title="Amplitude"
            )
            return fig
        else:
            # Return a simple HTML representation
            return None
    
    def create_language_distribution_chart(self, segments: List[Dict]):
        """Create language distribution visualization."""
        if not PLOTLY_AVAILABLE:
            return None
            
        try:
            # Count languages
            language_counts = {}
            language_durations = {}
            
            for segment in segments:
                lang = segment.get('original_language', 'unknown')
                duration = segment.get('end_time', 0) - segment.get('start_time', 0)
                
                language_counts[lang] = language_counts.get(lang, 0) + 1
                language_durations[lang] = language_durations.get(lang, 0) + duration
            
            # Create subplots
            fig = make_subplots(
                rows=1, cols=2,
                subplot_titles=('Language Distribution by Segments', 'Language Distribution by Duration'),
                specs=[[{'type': 'domain'}, {'type': 'domain'}]]
            )
            
            # Pie chart for segment counts
            fig.add_trace(
                go.Pie(
                    labels=list(language_counts.keys()),
                    values=list(language_counts.values()),
                    name="Segments",
                    hovertemplate='%{label}<br>%{value} segments<br>%{percent}<extra></extra>'
                ),
                row=1, col=1
            )
            
            # Pie chart for durations
            fig.add_trace(
                go.Pie(
                    labels=list(language_durations.keys()),
                    values=list(language_durations.values()),
                    name="Duration",
                    hovertemplate='%{label}<br>%{value:.1f}s<br>%{percent}<extra></extra>'
                ),
                row=1, col=2
            )
            
            fig.update_layout(
                title_text="🌍 Language Analysis",
                height=400,
                showlegend=True
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating language distribution chart: {e}")
            return None


class SubtitleRenderer:
    """Advanced subtitle rendering with synchronization."""
    
    def __init__(self):
        self.subtitle_style = """
        <style>
        .subtitle-container {
            max-height: 400px;
            overflow-y: auto;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            border-radius: 15px;
            padding: 20px;
            box-shadow: 0 10px 30px rgba(0,0,0,0.2);
            margin: 10px 0;
        }
        .subtitle-segment {
            background: rgba(255,255,255,0.95);
            margin: 10px 0;
            padding: 15px;
            border-radius: 10px;
            border-left: 4px solid #4ECDC4;
            box-shadow: 0 2px 10px rgba(0,0,0,0.1);
            transition: all 0.3s ease;
        }
        .subtitle-segment:hover {
            transform: translateY(-2px);
            box-shadow: 0 5px 20px rgba(0,0,0,0.15);
        }
        .subtitle-header {
            display: flex;
            justify-content: space-between;
            align-items: center;
            margin-bottom: 10px;
            font-weight: bold;
        }
        .speaker-label {
            background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
            color: white;
            padding: 5px 12px;
            border-radius: 20px;
            font-size: 12px;
            font-weight: bold;
        }
        .timestamp {
            color: #666;
            font-size: 12px;
            font-family: 'Courier New', monospace;
        }
        .language-tag {
            background: #45B7D1;
            color: white;
            padding: 2px 8px;
            border-radius: 10px;
            font-size: 10px;
            margin-left: 5px;
        }
        .original-text {
            margin: 8px 0;
            font-size: 16px;
            color: #2C3E50;
            line-height: 1.4;
        }
        .translated-text {
            margin: 8px 0;
            font-size: 14px;
            color: #7F8C8D;
            font-style: italic;
            line-height: 1.4;
            border-top: 1px solid #ECF0F1;
            padding-top: 8px;
        }
        .confidence-bar {
            width: 100%;
            height: 4px;
            background: #ECF0F1;
            border-radius: 2px;
            overflow: hidden;
            margin-top: 5px;
        }
        .confidence-fill {
            height: 100%;
            background: linear-gradient(90deg, #FF6B6B, #4ECDC4, #45B7D1);
            transition: width 0.3s ease;
        }
        </style>
        """
    
    def render_subtitles(self, segments: List[Dict], show_translations: bool = True) -> str:
        """
        Render beautiful HTML subtitles with speaker attribution.
        
        Args:
            segments: List of processed segments
            show_translations: Whether to show translations
            
        Returns:
            str: HTML formatted subtitles
        """
        try:
            html_parts = [self.subtitle_style]
            html_parts.append('<div class="subtitle-container">')
            
            for i, segment in enumerate(segments):
                speaker_id = segment.get('speaker_id', f'Speaker_{i}')
                start_time = segment.get('start_time', 0)
                end_time = segment.get('end_time', 0)
                original_text = segment.get('original_text', '')
                translated_text = segment.get('translated_text', '')
                original_language = segment.get('original_language', 'unknown')
                confidence = segment.get('confidence_transcription', 0.0)
                
                # Format timestamps
                start_str = self._format_timestamp(start_time)
                end_str = self._format_timestamp(end_time)
                
                html_parts.append('<div class="subtitle-segment">')
                
                # Header with speaker and timestamp
                html_parts.append('<div class="subtitle-header">')
                html_parts.append(f'<span class="speaker-label">{speaker_id.replace("SPEAKER_", "Speaker ")}</span>')
                html_parts.append(f'<span class="timestamp">{start_str} - {end_str}</span>')
                html_parts.append('</div>')
                
                # Original text with language tag
                if original_text:
                    html_parts.append('<div class="original-text">')
                    html_parts.append(f'πŸ—£οΈ {original_text}')
                    html_parts.append(f'<span class="language-tag">{original_language.upper()}</span>')
                    html_parts.append('</div>')
                
                # Translated text
                if show_translations and translated_text and translated_text != original_text:
                    html_parts.append('<div class="translated-text">')
                    html_parts.append(f'πŸ”„ {translated_text}')
                    html_parts.append('</div>')
                
                # Confidence indicator
                confidence_percent = confidence * 100
                html_parts.append('<div class="confidence-bar">')
                html_parts.append(f'<div class="confidence-fill" style="width: {confidence_percent}%"></div>')
                html_parts.append('</div>')
                
                html_parts.append('</div>')
            
            html_parts.append('</div>')
            return ''.join(html_parts)
            
        except Exception as e:
            logger.error(f"Error rendering subtitles: {e}")
            return f'<div style="color: red; padding: 20px;">Error rendering subtitles: {str(e)}</div>'
    
    def _format_timestamp(self, seconds: float) -> str:
        """Format timestamp in MM:SS format."""
        try:
            minutes = int(seconds // 60)
            secs = seconds % 60
            return f"{minutes:02d}:{secs:05.2f}"
        except:
            return "00:00.00"


class PerformanceMonitor:
    """Real-time performance monitoring component."""
    
    def create_performance_dashboard(self, processing_stats: Dict) -> str:
        """Create performance monitoring dashboard."""
        try:
            component_times = processing_stats.get('component_times', {})
            total_time = processing_stats.get('total_time', 0)
            
            if PLOTLY_AVAILABLE and component_times:
                # Create performance chart
                components = list(component_times.keys())
                times = list(component_times.values())
                
                fig = go.Figure(data=[
                    go.Bar(
                        x=components,
                        y=times,
                        marker_color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7'][:len(components)],
                        text=[f'{t:.2f}s' for t in times],
                        textposition='auto',
                    )
                ])
                
                fig.update_layout(
                    title='⚑ Processing Performance Breakdown',
                    xaxis_title='Pipeline Components',
                    yaxis_title='Processing Time (seconds)',
                    height=400,
                    plot_bgcolor='white',
                    paper_bgcolor='#F8F9FA'
                )
                
                # Convert to HTML
                plot_html = fig.to_html(include_plotlyjs='cdn', div_id='performance-chart')
            else:
                plot_html = '<div style="text-align: center; padding: 40px;">Performance chart temporarily unavailable</div>'
            
            # Add summary stats
            stats_html = f"""
            <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
                        color: white; padding: 20px; border-radius: 15px; margin: 10px 0;
                        box-shadow: 0 10px 30px rgba(0,0,0,0.2);">
                <h3 style="margin: 0 0 15px 0;">πŸ“Š Processing Summary</h3>
                <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
                    <div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
                        <div style="font-size: 24px; font-weight: bold;">{total_time:.2f}s</div>
                        <div style="opacity: 0.8;">Total Processing Time</div>
                    </div>
                    <div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
                        <div style="font-size: 24px; font-weight: bold;">{processing_stats.get('num_speakers', 0)}</div>
                        <div style="opacity: 0.8;">Speakers Detected</div>
                    </div>
                    <div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
                        <div style="font-size: 24px; font-weight: bold;">{processing_stats.get('num_segments', 0)}</div>
                        <div style="opacity: 0.8;">Speech Segments</div>
                    </div>
                    <div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
                        <div style="font-size: 24px; font-weight: bold;">{len(processing_stats.get('languages_detected', []))}</div>
                        <div style="opacity: 0.8;">Languages Found</div>
                    </div>
                </div>
            </div>
            """
            
            return stats_html + plot_html
            
        except Exception as e:
            logger.error(f"Error creating performance dashboard: {e}")
            return f'<div style="color: red;">Performance Dashboard Error: {str(e)}</div>'


class FileDownloader:
    """Enhanced file download component with preview."""
    
    def create_download_section(self, outputs: Dict[str, str], filename_base: str) -> str:
        """Create download section with file previews."""
        download_html = """
        <div style="margin-top: 20px;">
            <h3 style="margin-bottom: 10px;">πŸ“₯ Download Results</h3>
            <div style="display: flex; flex-direction: column; gap: 10px;">
        """
        
        # Create download buttons for each format
        for format_name, content in outputs.items():
            if format_name in ['json', 'srt_original', 'srt_translated', 'text', 'csv', 'summary']:
                download_html += f"""
                <div style="background: #f0f0f0; padding: 15px; border-radius: 10px; border: 1px solid #ccc;">
                    <h4 style="margin: 0 0 5px 0;">{format_name.upper()} Preview</h4>
                    <pre style="font-size: 14px; white-space: pre-wrap; word-wrap: break-word; background: #fff; padding: 10px; border-radius: 5px; border: 1px solid #eee; overflow-x: auto;">
                        {content[:500]}...
                    </pre>
                    <a href="data:text/{self._get_file_extension(format_name)};base64,{base64.b64encode(content.encode()).decode()}" 
                       download="{filename_base}.{self._get_file_extension(format_name)}" 
                       style="background: linear-gradient(45deg, #FF6B6B, #4ECDC4); color: white; padding: 10px 20px; border-radius: 8px; text-decoration: none; display: inline-block; margin-top: 10px;">
                        Download {format_name.upper()}
                    </a>
                </div>
                """
        
        download_html += """
            </div>
        </div>
        """
        return download_html
    
    def _get_file_extension(self, format_name: str) -> str:
        """Get appropriate file extension for format."""
        extensions = {
            'json': 'json',
            'srt_original': 'srt',
            'srt_translated': 'en.srt',
            'text': 'txt',
            'csv': 'csv',
            'summary': 'summary.txt'
        }
        return extensions.get(format_name, 'txt')


def create_custom_css() -> str:
    """Create custom CSS for the entire application."""
    return """
    /* Global Styles */
    .gradio-container {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
        min-height: 100vh;
    }
    
    /* Header Styles */
    .main-header {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        text-align: center;
        padding: 30px;
        border-radius: 0 0 20px 20px;
        margin-bottom: 20px;
        box-shadow: 0 5px 15px rgba(0,0,0,0.1);
    }
    
    .main-title {
        font-size: 2.5em;
        font-weight: bold;
        margin: 0;
        text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
    }
    
    .main-subtitle {
        font-size: 1.2em;
        opacity: 0.9;
        margin-top: 10px;
    }
    
    /* Upload Area */
    .upload-area {
        border: 3px dashed #4ECDC4;
        border-radius: 15px;
        padding: 40px;
        text-align: center;
        background: rgba(78, 205, 196, 0.1);
        transition: all 0.3s ease;
    }
    
    .upload-area:hover {
        border-color: #45B7D1;
        background: rgba(69, 183, 209, 0.15);
        transform: translateY(-2px);
    }
    
    /* Button Styles */
    .primary-button {
        background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
        border: none;
        color: white;
        padding: 15px 30px;
        border-radius: 25px;
        font-weight: bold;
        transition: all 0.3s ease;
        box-shadow: 0 4px 15px rgba(0,0,0,0.2);
    }
    
    .primary-button:hover {
        transform: translateY(-3px);
        box-shadow: 0 6px 20px rgba(0,0,0,0.3);
    }
    
    /* Card Styles */
    .info-card {
        background: white;
        border-radius: 15px;
        padding: 20px;
        margin: 10px;
        box-shadow: 0 5px 15px rgba(0,0,0,0.1);
        transition: all 0.3s ease;
    }
    
    .info-card:hover {
        transform: translateY(-3px);
        box-shadow: 0 8px 25px rgba(0,0,0,0.15);
    }
    
    /* Progress Animations */
    @keyframes pulse {
        0% { opacity: 1; }
        50% { opacity: 0.5; }
        100% { opacity: 1; }
    }
    
    .processing {
        animation: pulse 1.5s infinite;
    }
    
    /* Responsive Design */
    @media (max-width: 768px) {
        .main-title {
            font-size: 2em;
        }
        .main-subtitle {
            font-size: 1em;
        }
    }
    """


def create_loading_animation() -> str:
    """Create loading animation HTML."""
    return """
    <div style="text-align: center; padding: 40px;">
        <div style="display: inline-block; width: 50px; height: 50px; border: 3px solid #f3f3f3; 
                    border-top: 3px solid #4ECDC4; border-radius: 50%; animation: spin 1s linear infinite;"></div>
        <div style="margin-top: 20px; font-size: 18px; color: #666;">
            🎡 Processing your audio with AI magic...
        </div>
        <div style="margin-top: 10px; font-size: 14px; color: #999;">
            This may take a few moments depending on audio length
        </div>
    </div>
    <style>
    @keyframes spin {
        0% { transform: rotate(0deg); }
        100% { transform: rotate(360deg); }
    }
    </style>
    """


# Export main classes for use in app.py
__all__ = [
    'WaveformVisualizer',
    'SubtitleRenderer', 
    'PerformanceMonitor',
    'FileDownloader',
    'create_custom_css',
    'create_loading_animation'
]