""" Advanced Visualization Components for Multilingual Audio Intelligence System This module provides sophisticated visualization components for creating interactive audio analysis interfaces. Features include waveform visualization, speaker timelines, and processing feedback displays. Key Features: - Interactive waveform with speaker segment overlays - Speaker activity timeline visualization - Processing progress indicators - Exportable visualizations Dependencies: plotly, matplotlib, numpy """ import numpy as np import logging from typing import List, Dict, Optional, Tuple, Any import base64 import io from datetime import datetime import json # Safe imports with fallbacks try: import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots PLOTLY_AVAILABLE = True except ImportError: PLOTLY_AVAILABLE = False logging.warning("Plotly not available. Some visualizations will be limited.") try: import matplotlib.pyplot as plt import matplotlib.patches as patches MATPLOTLIB_AVAILABLE = True except ImportError: MATPLOTLIB_AVAILABLE = False logging.warning("Matplotlib not available. Fallback visualizations will be used.") logger = logging.getLogger(__name__) class WaveformVisualizer: """Advanced waveform visualization with speaker overlays.""" def __init__(self, width: int = 1000, height: int = 300): self.width = width self.height = height self.colors = [ '#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9' ] def create_interactive_waveform(self, audio_data: np.ndarray, sample_rate: int, speaker_segments: List[Dict], transcription_segments: List[Dict] = None): """ Create interactive waveform visualization with speaker overlays. Args: audio_data: Audio waveform data sample_rate: Audio sample rate speaker_segments: List of speaker segment dicts transcription_segments: Optional transcription data Returns: plotly.graph_objects.Figure: Plotly figure object """ if not PLOTLY_AVAILABLE: return self._create_fallback_visualization(audio_data, sample_rate, speaker_segments) try: # Create time axis time_axis = np.linspace(0, len(audio_data) / sample_rate, len(audio_data)) # Downsample for visualization if needed if len(audio_data) > 50000: step = len(audio_data) // 50000 audio_data = audio_data[::step] time_axis = time_axis[::step] # Create the main plot fig = make_subplots( rows=2, cols=1, row_heights=[0.7, 0.3], subplot_titles=("Audio Waveform with Speaker Segments", "Speaker Timeline"), vertical_spacing=0.1 ) # Add waveform fig.add_trace( go.Scatter( x=time_axis, y=audio_data, mode='lines', name='Waveform', line=dict(color='#2C3E50', width=1), hovertemplate='Time: %{x:.2f}s
Amplitude: %{y:.3f}' ), row=1, col=1 ) # Add speaker segment overlays speaker_colors = {} for i, segment in enumerate(speaker_segments): speaker_id = segment.get('speaker_id', f'Speaker_{i}') if speaker_id not in speaker_colors: speaker_colors[speaker_id] = self.colors[len(speaker_colors) % len(self.colors)] # Add shaded region for speaker segment fig.add_vrect( x0=segment['start_time'], x1=segment['end_time'], fillcolor=speaker_colors[speaker_id], opacity=0.3, layer="below", line_width=0, row=1, col=1 ) # Add speaker label mid_time = (segment['start_time'] + segment['end_time']) / 2 if len(audio_data) > 0: fig.add_annotation( x=mid_time, y=max(audio_data) * 0.8, text=speaker_id.replace('SPEAKER_', 'S'), showarrow=False, font=dict(color=speaker_colors[speaker_id], size=10, family="Arial Black"), row=1, col=1 ) # Create speaker timeline in bottom subplot for i, (speaker_id, color) in enumerate(speaker_colors.items()): speaker_segments_filtered = [s for s in speaker_segments if s['speaker_id'] == speaker_id] for segment in speaker_segments_filtered: fig.add_trace( go.Scatter( x=[segment['start_time'], segment['end_time']], y=[i, i], mode='lines', name=speaker_id, line=dict(color=color, width=8), showlegend=(segment == speaker_segments_filtered[0]), hovertemplate=f'{speaker_id}
%{{x:.2f}}s' ), row=2, col=1 ) # Update layout fig.update_layout( title=dict( text="🎵 Multilingual Audio Intelligence Visualization", font=dict(size=20, family="Arial Black"), x=0.5 ), height=600, hovermode='x unified', showlegend=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), plot_bgcolor='white', paper_bgcolor='#F8F9FA' ) fig.update_xaxes(title_text="Time (seconds)", row=2, col=1) fig.update_yaxes(title_text="Amplitude", row=1, col=1) if speaker_colors: fig.update_yaxes(title_text="Speaker", row=2, col=1, ticktext=list(speaker_colors.keys()), tickvals=list(range(len(speaker_colors)))) return fig except Exception as e: logger.error(f"Error creating waveform visualization: {e}") return self._create_fallback_visualization(audio_data, sample_rate, speaker_segments) def _create_fallback_visualization(self, audio_data, sample_rate, speaker_segments): """Create a simple fallback visualization when Plotly is not available.""" if PLOTLY_AVAILABLE: fig = go.Figure() fig.add_annotation( text="Waveform visualization temporarily unavailable", x=0.5, y=0.5, showarrow=False, font=dict(size=16, color="gray") ) fig.update_layout( title="Audio Waveform Visualization", xaxis_title="Time (seconds)", yaxis_title="Amplitude" ) return fig else: # Return a simple HTML representation return None def create_language_distribution_chart(self, segments: List[Dict]): """Create language distribution visualization.""" if not PLOTLY_AVAILABLE: return None try: # Count languages language_counts = {} language_durations = {} for segment in segments: lang = segment.get('original_language', 'unknown') duration = segment.get('end_time', 0) - segment.get('start_time', 0) language_counts[lang] = language_counts.get(lang, 0) + 1 language_durations[lang] = language_durations.get(lang, 0) + duration # Create subplots fig = make_subplots( rows=1, cols=2, subplot_titles=('Language Distribution by Segments', 'Language Distribution by Duration'), specs=[[{'type': 'domain'}, {'type': 'domain'}]] ) # Pie chart for segment counts fig.add_trace( go.Pie( labels=list(language_counts.keys()), values=list(language_counts.values()), name="Segments", hovertemplate='%{label}
%{value} segments
%{percent}' ), row=1, col=1 ) # Pie chart for durations fig.add_trace( go.Pie( labels=list(language_durations.keys()), values=list(language_durations.values()), name="Duration", hovertemplate='%{label}
%{value:.1f}s
%{percent}' ), row=1, col=2 ) fig.update_layout( title_text="🌍 Language Analysis", height=400, showlegend=True ) return fig except Exception as e: logger.error(f"Error creating language distribution chart: {e}") return None class SubtitleRenderer: """Advanced subtitle rendering with synchronization.""" def __init__(self): self.subtitle_style = """ """ def render_subtitles(self, segments: List[Dict], show_translations: bool = True) -> str: """ Render beautiful HTML subtitles with speaker attribution. Args: segments: List of processed segments show_translations: Whether to show translations Returns: str: HTML formatted subtitles """ try: html_parts = [self.subtitle_style] html_parts.append('
') for i, segment in enumerate(segments): speaker_id = segment.get('speaker_id', f'Speaker_{i}') start_time = segment.get('start_time', 0) end_time = segment.get('end_time', 0) original_text = segment.get('original_text', '') translated_text = segment.get('translated_text', '') original_language = segment.get('original_language', 'unknown') confidence = segment.get('confidence_transcription', 0.0) # Format timestamps start_str = self._format_timestamp(start_time) end_str = self._format_timestamp(end_time) html_parts.append('
') # Header with speaker and timestamp html_parts.append('
') html_parts.append(f'{speaker_id.replace("SPEAKER_", "Speaker ")}') html_parts.append(f'{start_str} - {end_str}') html_parts.append('
') # Original text with language tag if original_text: html_parts.append('
') html_parts.append(f'🗣️ {original_text}') html_parts.append(f'{original_language.upper()}') html_parts.append('
') # Translated text if show_translations and translated_text and translated_text != original_text: html_parts.append('
') html_parts.append(f'🔄 {translated_text}') html_parts.append('
') # Confidence indicator confidence_percent = confidence * 100 html_parts.append('
') html_parts.append(f'
') html_parts.append('
') html_parts.append('
') html_parts.append('
') return ''.join(html_parts) except Exception as e: logger.error(f"Error rendering subtitles: {e}") return f'
Error rendering subtitles: {str(e)}
' def _format_timestamp(self, seconds: float) -> str: """Format timestamp in MM:SS format.""" try: minutes = int(seconds // 60) secs = seconds % 60 return f"{minutes:02d}:{secs:05.2f}" except: return "00:00.00" class PerformanceMonitor: """Real-time performance monitoring component.""" def create_performance_dashboard(self, processing_stats: Dict) -> str: """Create performance monitoring dashboard.""" try: component_times = processing_stats.get('component_times', {}) total_time = processing_stats.get('total_time', 0) if PLOTLY_AVAILABLE and component_times: # Create performance chart components = list(component_times.keys()) times = list(component_times.values()) fig = go.Figure(data=[ go.Bar( x=components, y=times, marker_color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7'][:len(components)], text=[f'{t:.2f}s' for t in times], textposition='auto', ) ]) fig.update_layout( title='⚡ Processing Performance Breakdown', xaxis_title='Pipeline Components', yaxis_title='Processing Time (seconds)', height=400, plot_bgcolor='white', paper_bgcolor='#F8F9FA' ) # Convert to HTML plot_html = fig.to_html(include_plotlyjs='cdn', div_id='performance-chart') else: plot_html = '
Performance chart temporarily unavailable
' # Add summary stats stats_html = f"""

📊 Processing Summary

{total_time:.2f}s
Total Processing Time
{processing_stats.get('num_speakers', 0)}
Speakers Detected
{processing_stats.get('num_segments', 0)}
Speech Segments
{len(processing_stats.get('languages_detected', []))}
Languages Found
""" return stats_html + plot_html except Exception as e: logger.error(f"Error creating performance dashboard: {e}") return f'
Performance Dashboard Error: {str(e)}
' class FileDownloader: """Enhanced file download component with preview.""" def create_download_section(self, outputs: Dict[str, str], filename_base: str) -> str: """Create download section with file previews.""" download_html = """

📥 Download Results

""" # Create download buttons for each format for format_name, content in outputs.items(): if format_name in ['json', 'srt_original', 'srt_translated', 'text', 'csv', 'summary']: download_html += f"""

{format_name.upper()} Preview

                        {content[:500]}...
                    
Download {format_name.upper()}
""" download_html += """
""" return download_html def _get_file_extension(self, format_name: str) -> str: """Get appropriate file extension for format.""" extensions = { 'json': 'json', 'srt_original': 'srt', 'srt_translated': 'en.srt', 'text': 'txt', 'csv': 'csv', 'summary': 'summary.txt' } return extensions.get(format_name, 'txt') def create_custom_css() -> str: """Create custom CSS for the entire application.""" return """ /* Global Styles */ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); min-height: 100vh; } /* Header Styles */ .main-header { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; text-align: center; padding: 30px; border-radius: 0 0 20px 20px; margin-bottom: 20px; box-shadow: 0 5px 15px rgba(0,0,0,0.1); } .main-title { font-size: 2.5em; font-weight: bold; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3); } .main-subtitle { font-size: 1.2em; opacity: 0.9; margin-top: 10px; } /* Upload Area */ .upload-area { border: 3px dashed #4ECDC4; border-radius: 15px; padding: 40px; text-align: center; background: rgba(78, 205, 196, 0.1); transition: all 0.3s ease; } .upload-area:hover { border-color: #45B7D1; background: rgba(69, 183, 209, 0.15); transform: translateY(-2px); } /* Button Styles */ .primary-button { background: linear-gradient(45deg, #FF6B6B, #4ECDC4); border: none; color: white; padding: 15px 30px; border-radius: 25px; font-weight: bold; transition: all 0.3s ease; box-shadow: 0 4px 15px rgba(0,0,0,0.2); } .primary-button:hover { transform: translateY(-3px); box-shadow: 0 6px 20px rgba(0,0,0,0.3); } /* Card Styles */ .info-card { background: white; border-radius: 15px; padding: 20px; margin: 10px; box-shadow: 0 5px 15px rgba(0,0,0,0.1); transition: all 0.3s ease; } .info-card:hover { transform: translateY(-3px); box-shadow: 0 8px 25px rgba(0,0,0,0.15); } /* Progress Animations */ @keyframes pulse { 0% { opacity: 1; } 50% { opacity: 0.5; } 100% { opacity: 1; } } .processing { animation: pulse 1.5s infinite; } /* Responsive Design */ @media (max-width: 768px) { .main-title { font-size: 2em; } .main-subtitle { font-size: 1em; } } """ def create_loading_animation() -> str: """Create loading animation HTML.""" return """
🎵 Processing your audio with AI magic...
This may take a few moments depending on audio length
""" # Export main classes for use in app.py __all__ = [ 'WaveformVisualizer', 'SubtitleRenderer', 'PerformanceMonitor', 'FileDownloader', 'create_custom_css', 'create_loading_animation' ]