File size: 10,957 Bytes
7015834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import dateutil.relativedelta
import streamlit as st 
import pandas as pd
import yfinance as yf
import plotly.graph_objects as go
import datetime
import dateutil
import ta
import plotly.express as px
import pandas_ta as pta
import numpy as np
npNaN = np.nan
st.set_page_config(
    page_title="Stock Analysis",
    page_icon="page_with_curl",
    layout='wide'
)

st.title("Stock Analysis")

col1,col2,col3 =st.columns(3)

today= datetime.date.today()

with col1:
    ticker =st.text_input("Stocker Ticker","TSLA")
with col2:
    start_date = st.date_input("choose Start Date",datetime.date(today.year -1,today.month,today.day))
with col3:
    end_date = st.date_input("choose End Date",datetime.date(today.year,today.month,today.day))
     
st.subheader(ticker)
stock = yf.Ticker(ticker)
try:
    info = stock.get_info()
    st.write(stock.info['longBusinessSummary'])
    st.write("**Sector:**",stock.info['sector'])
    st.write("**Full Time Employees:**",stock.info['fullTimeEmployees'])
    st.write("**Website:**",stock.info['website'])
except Exception as e:
    print(f"Error: {e}")
    
col1= st.columns(1)[0]
with col1:
    df = pd.DataFrame({
    "Metric": ["Market Cap", "Beta", "EPS", "PE Ratio","profitMargins",'revenuePerShare','financialCurrency'],
    "Value": [
        stock.info['marketCap'],
        stock.info['beta'],
        stock.info['trailingEps'],
        stock.info['trailingPE'],
        stock.info['profitMargins'],
        stock.info['revenuePerShare'],
        stock.info['financialCurrency']
        
        
     ]
})
    st.dataframe(df.style.set_properties(**{'font-size': '20px'}),width=1000)

data = yf.download(ticker,start=start_date,end= end_date)

col1,col2,col3 = st.columns(3)
daily_change = data['Close'].iloc[-1] - data['Close'].iloc[-2]
col1.metric("Daily Change",str(round(data['Close'].iloc[-1],2)),str(round(daily_change,2)))

# Display historical data based on start and end date
filtered_data = data[(data.index >= pd.to_datetime(start_date)) & (data.index <= pd.to_datetime(end_date))]

st.title(f"Historical Data ({start_date} to {end_date})")
st.dataframe(filtered_data.sort_index(ascending=False).round(3).style.set_properties(**{'font-size': '20px'}), width=1000)

col1,col2,col3,col4,col5,col6,col7=st.columns([1,1,1,1,1,1,1])

num_period=''
with col1:
    if st.button("5D"):
        num_period="5d"
with col2:
    if st.button("1M"):
        num_period="1mo"
with col3:
    if st.button("6M"):
        num_period="6mo"
with col4:
    if st.button("YTD"):
        num_period='ytd'
with col5:
    if st.button("1Y"):
        num_period='1y'
with col6:
    if st.button("5Y"):
        num_period='5y'
with col7:
    if st.button("MAX"):
        num_period= 'max'

##  
def filter_data(dataframe,num_period):
    if num_period =='1mo':
        date = dataframe.index[-1] + dateutil.relativedelta.relativedelta(months=-1)
    elif num_period == '5d':
        date =dataframe.index[-1] + dateutil.relativedelta.relativedelta(days=-5)
    elif num_period == '6mo':
        date =dataframe.index[-1] + dateutil.relativedelta.relativedelta(months=-6)
    elif num_period == '1y':
        date =dataframe.index[-1] + dateutil.relativedelta.relativedelta(years=-1)
    elif num_period == '5y':
        date =dataframe.index[-1] + dateutil.relativedelta.relativedelta(years=-5)
    elif num_period == 'ytd':
        date = datetime.datetime(dataframe.index[-1].year,1,1).strftime("%Y-%m-%d")
    else:
        date = dataframe.index[0]
    dataframe_reset = dataframe.reset_index()  # Reset index to create a 'Date' column
    return dataframe_reset[dataframe_reset['Date'] > date]

def close_chart(dataframe,num_period=False):
    if num_period:
        dataframe =filter_data(dataframe,num_period)
    fig =go.Figure()
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],y= dataframe['Open'],
        mode='lines',
        name ='Open',line =dict(width=2,color='#5ab7ff')
    ))
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],y= dataframe['Close'],
        mode='lines',
        name ='Close',line =dict(width=2,color='black')
    ))
    fig.add_trace(go.Scatter(
        x=dataframe["Date"],y= dataframe['High'],
        mode='lines',
        name ='High',line =dict(width=2,color='#0078ff')
    ))
    
    fig.add_trace(go.Scatter(
        x=dataframe["Date"],y= dataframe['Low'],
        mode='lines',
        name ='Low',line =dict(width=2,color='red')
    ))
    fig.update_xaxes(rangeslider_visible = True)
    fig.update_layout(
    height=500,
    margin=dict(l=0, r=20, t=20, b=0),
    plot_bgcolor='white',
    paper_bgcolor='#E1EFFF',
    legend=dict(yanchor='top', xanchor='right'),
    xaxis_title="Date",  # Add this
    yaxis_title="Price",  # Add this
    )

    return fig


def candlestick(dataframe,num_period):
    dataframe = filter_data(dataframe,num_period)
    fig=go.Figure()
    fig.add_trace(go.Candlestick(x=dataframe['Date'],
                   open =dataframe['Open'],high=dataframe['High'],
                   low = dataframe['Low'],close=dataframe['Close']              
        ))
    fig.update_layout(
    xaxis_title="Date",  # Add this
    yaxis_title="Price",  # Add this
    showlegend=False,
    height=500,
    margin=dict(l=0, r=20, t=20, b=0),
    plot_bgcolor='white',
    paper_bgcolor='#E1EFFF'
    )

    return fig

def RSI(dataframe,num_period):
    dataframe['RSI']= pta.rsi(dataframe['Close'])
    dataframe = filter_data(dataframe,num_period)
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],
        y=dataframe.RSI,name='RSI',marker_color='orange',line= dict(width=2,color ='orange'),
        ))
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],
        y=[70]*len(dataframe),name='Overbought',marker_color='red',line= dict(width=2,color ='red',dash='dash'),
        ))
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],
        y=[30]*len(dataframe),fill='tonexty',name='Oversold',marker_color='#79da84',
        line= dict(width=2,color ='#79da84',dash='dash')
        ))
    fig.update_layout(
        xaxis_title='Date',
        yaxis_title='RSI',
        height=500,
        margin=dict(l=0, r=20, t=20, b=0),
        plot_bgcolor='white',
        paper_bgcolor='#E1EFFF'
    )
    return fig


def Moving_average(dataframe,num_period):
    dataframe['SMA_50']=pta.sma(dataframe['Close'],50)
    dataframe = filter_data(dataframe,num_period)
    if dataframe['SMA_50'].isna().sum() > 0:
        st.warning("Not enough data to calculate the moving average.")
    fig=go.Figure()
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],y= dataframe['Open'],
        mode='lines',
        name ='Open',line =dict(width=2,color='#5ab7ff')
    ))
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],y= dataframe['Close'],
        mode='lines',
        name ='Open',line =dict(width=2,color='black')
    ))
    fig.add_trace(go.Scatter(
        x=dataframe["Date"],y= dataframe['High'],
        mode='lines',
        name ='Open',line =dict(width=2,color='#0078ff')
    ))
    
    fig.add_trace(go.Scatter(
        x=dataframe["Date"],y= dataframe['Low'],
        mode='lines',
        name ='Open',line =dict(width=2,color='red')
    ))
    fig.add_traces(go.Scatter(
        x=dataframe["Date"],y= dataframe['SMA_50'],
        mode='lines',
        name ='SMA 50',line =dict(width=2,color='purple')
    ))
    fig.update_xaxes(rangeslider_visible = True)
    fig.update_layout(
    xaxis_title="Date",  # Add this
    yaxis_title="Price",  # Add this
    height=500,
    margin=dict(l=0, r=20, t=20, b=0),
    plot_bgcolor='white',
    paper_bgcolor='#E1EFFF',
    legend=dict(yanchor='top', xanchor='right')
    )

    return fig


def MACD(dataframe,num_period):
    macd = pta.macd(dataframe['Close']).iloc[:,0]
    macd_signal = pta.macd(dataframe['Close']).iloc[:,1]
    macd_hist =pta.macd(dataframe['Close']).iloc[:,2]
    dataframe['MACD'] = macd
    dataframe['MACD-Signal']=macd_signal
    dataframe['MACD-Hist']=macd_hist
    dataframe = filter_data(dataframe,num_period)
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],
        y=dataframe['MACD'],name='RSI',marker_color='orange',line=dict(width=2,color='orange'),
    ))
    fig.add_trace(go.Scatter(
        x=dataframe['Date'],
        y=dataframe['MACD-Signal'],name='Overbought',marker_color ='red',line =dict(width=2,color='red',dash='dash'),
    ))
    c=['red' if cl<0 else 'green' for cl in macd_hist]
    
    return fig
  
      
col1,col2,col3 = st.columns([1,1,4])

with col1:
    char_type =st.selectbox('',('Candle','line'))
with col2:
    if char_type == 'Candle':
        
        indicators = st.selectbox('',('RSI','MACD'))
    else:
        indicators = st.selectbox('',('RSI','Moving Average','MACD'))
        
ticker_ = yf.Ticker(ticker)
new_df1=ticker_.history(period='max')
data1= ticker_.history(period='max')
if num_period == '':
    
    if char_type == 'Candle' and indicators == 'RSI':
        st.plotly_chart(candlestick(new_df1,'1y'),use_container_width=True)
        st.plotly_chart(RSI(new_df1,'1y'),use_container_width=True)
        
    if char_type == 'Candle' and indicators == 'MACD':
        st.plotly_chart(candlestick(new_df1,'1y'),use_container_width=True)
        st.plotly_chart(MACD(new_df1,'1y'),use_container_width=True)
        
    if char_type == 'line' and indicators == 'RSI':
        st.plotly_chart(close_chart(new_df1,'1y'),use_container_width=True)
        st.plotly_chart(RSI(new_df1,'1y'),use_container_width=True)
        
    if char_type == 'line' and indicators == 'Moving Average':
        st.plotly_chart(Moving_average(new_df1,'1y'),use_container_width=True)
        
    if char_type == 'line' and indicators == 'MACD':
        st.plotly_chart(close_chart(new_df1,'1y'),use_container_width=True)
        st.plotly_chart(MACD(new_df1,'1y'),use_container_width=True)
        
else:
    if char_type == 'Candle' and indicators == 'RSI':
        st.plotly_chart(candlestick(new_df1,num_period),use_container_width=True)
        st.plotly_chart(RSI(new_df1,num_period),use_container_width=True)
        
    if char_type == 'Candle' and indicators == 'MACD':
        st.plotly_chart(candlestick(new_df1,num_period),use_container_width=True)
        st.plotly_chart(MACD(new_df1,num_period),use_container_width=True)
        
    if char_type == 'line' and indicators == 'RSI':
        st.plotly_chart(close_chart(new_df1,num_period),use_container_width=True)
        st.plotly_chart(RSI(new_df1,num_period),use_container_width=True)
        
    if char_type == 'line' and indicators == 'Moving Average':
        st.plotly_chart(Moving_average(new_df1,num_period),use_container_width=True)
        
    if char_type == 'line' and indicators == 'MACD':
        st.plotly_chart(close_chart(new_df1,num_period),use_container_width=True)
        st.plotly_chart(MACD(new_df1,num_period),use_container_width=True)