minor changes
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from transformers import MBart50Tokenizer, AutoModelForSeq2SeqLM, pipeline
|
2 |
from langdetect import detect
|
|
|
3 |
|
4 |
def load_models():
|
5 |
tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50")
|
@@ -26,30 +27,10 @@ def detect_language(text):
|
|
26 |
return lang_code
|
27 |
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
return_tensors="pt",
|
34 |
-
max_length=1024,
|
35 |
-
truncation=True
|
36 |
-
)
|
37 |
-
summary_ids = summarizer.model.generate(
|
38 |
-
inputs["input_ids"],
|
39 |
-
max_length=100,
|
40 |
-
min_length=30,
|
41 |
-
length_penalty=2.0,
|
42 |
-
num_beams=4
|
43 |
-
)
|
44 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
45 |
-
summary = summary.replace(f"< >", "").strip()
|
46 |
-
return summary
|
47 |
-
|
48 |
-
|
49 |
-
def translate_to_english(text, lang_code):
|
50 |
-
# Set the language to English explicitly for translation
|
51 |
-
mbart_lang_code = "en_XX" # Always translate to English
|
52 |
-
|
53 |
# Encode the input text for translation
|
54 |
inputs = tokenizer(
|
55 |
f"<{mbart_lang_code}>{text}",
|
@@ -70,11 +51,28 @@ def translate_to_english(text, lang_code):
|
|
70 |
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
71 |
|
72 |
# Remove any special language code tokens like "<en_XX>"
|
73 |
-
translated_text =
|
74 |
|
75 |
return translated_text
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
st.title("Multilingual Summarization and Translation App")
|
80 |
st.markdown("""This app detects the language of the input text, summarizes it in the same language, and translates it into English.""")
|
@@ -91,11 +89,13 @@ if st.button("Process Text"):
|
|
91 |
st.warning(f"The detected language ({lang_code}) is not supported by the model.")
|
92 |
else:
|
93 |
try:
|
|
|
94 |
summary = summarize_text(user_input, lang_code)
|
95 |
st.write(f"### Summarized Text ({lang_code}):")
|
96 |
st.write(summary)
|
97 |
|
98 |
-
|
|
|
99 |
st.write("### Translated Text (English):")
|
100 |
st.write(translation)
|
101 |
|
|
|
1 |
from transformers import MBart50Tokenizer, AutoModelForSeq2SeqLM, pipeline
|
2 |
from langdetect import detect
|
3 |
+
import re
|
4 |
|
5 |
def load_models():
|
6 |
tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50")
|
|
|
27 |
return lang_code
|
28 |
|
29 |
|
30 |
+
def translate_to_english(text):
|
31 |
+
# Always translate to English (en_XX)
|
32 |
+
mbart_lang_code = "en_XX"
|
33 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Encode the input text for translation
|
35 |
inputs = tokenizer(
|
36 |
f"<{mbart_lang_code}>{text}",
|
|
|
51 |
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
52 |
|
53 |
# Remove any special language code tokens like "<en_XX>"
|
54 |
+
translated_text = re.sub(r"<[^>]+>", "", translated_text).strip()
|
55 |
|
56 |
return translated_text
|
57 |
|
58 |
+
def summarize_text(text, lang_code):
|
59 |
+
mbart_lang_code = LANGUAGE_CODES.get(lang_code, "en_XX") # Default to English if unsupported
|
60 |
+
inputs = tokenizer(
|
61 |
+
f"<{mbart_lang_code}>{text}",
|
62 |
+
return_tensors="pt",
|
63 |
+
max_length=1024,
|
64 |
+
truncation=True
|
65 |
+
)
|
66 |
+
summary_ids = summarizer.model.generate(
|
67 |
+
inputs["input_ids"],
|
68 |
+
max_length=100,
|
69 |
+
min_length=30,
|
70 |
+
length_penalty=2.0,
|
71 |
+
num_beams=4
|
72 |
+
)
|
73 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
74 |
+
summary = summary.replace(f"<>", "").strip()
|
75 |
+
return summary
|
76 |
|
77 |
st.title("Multilingual Summarization and Translation App")
|
78 |
st.markdown("""This app detects the language of the input text, summarizes it in the same language, and translates it into English.""")
|
|
|
89 |
st.warning(f"The detected language ({lang_code}) is not supported by the model.")
|
90 |
else:
|
91 |
try:
|
92 |
+
# First summarize the text
|
93 |
summary = summarize_text(user_input, lang_code)
|
94 |
st.write(f"### Summarized Text ({lang_code}):")
|
95 |
st.write(summary)
|
96 |
|
97 |
+
# Then translate the summary to English
|
98 |
+
translation = translate_to_english(summary)
|
99 |
st.write("### Translated Text (English):")
|
100 |
st.write(translation)
|
101 |
|