Spaces:
Runtime error
Runtime error
Update utils.py
Browse files
utils.py
CHANGED
@@ -6,6 +6,7 @@ from langchain.vectorstores import Chroma
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
from langchain_community.llms import HuggingFacePipeline
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
|
|
9 |
|
10 |
# Load and process documents
|
11 |
dir = "data"
|
@@ -31,7 +32,7 @@ vectordb = Chroma.from_documents(docs, embeddings, persist_directory=persist_dir
|
|
31 |
vectordb.persist()
|
32 |
new_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
33 |
|
34 |
-
def get_similar_docs(query, k=
|
35 |
if score:
|
36 |
similar_docs = new_db.similarity_search_with_score(query, k=k)
|
37 |
else:
|
@@ -39,20 +40,25 @@ def get_similar_docs(query, k=1, score=False):
|
|
39 |
return similar_docs
|
40 |
|
41 |
# Load LLM model from Hugging Face
|
42 |
-
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
task="text-generation",
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
}
|
54 |
)
|
55 |
|
|
|
|
|
56 |
chain = load_qa_chain(llm, chain_type="stuff")
|
57 |
|
58 |
def get_helpful_answer(text):
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
from langchain_community.llms import HuggingFacePipeline
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
|
11 |
# Load and process documents
|
12 |
dir = "data"
|
|
|
32 |
vectordb.persist()
|
33 |
new_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
34 |
|
35 |
+
def get_similar_docs(query, k=2, score=False):
|
36 |
if score:
|
37 |
similar_docs = new_db.similarity_search_with_score(query, k=k)
|
38 |
else:
|
|
|
40 |
return similar_docs
|
41 |
|
42 |
# Load LLM model from Hugging Face
|
|
|
43 |
|
44 |
+
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
|
48 |
+
text_generation_pipeline = pipeline(
|
49 |
+
model=model,
|
50 |
+
tokenizer=tokenizer,
|
51 |
task="text-generation",
|
52 |
+
temperature=0.2,
|
53 |
+
do_sample=True,
|
54 |
+
repetition_penalty=1.1,
|
55 |
+
return_full_text=True,
|
56 |
+
max_new_tokens=400,
|
57 |
+
inference= True,
|
|
|
58 |
)
|
59 |
|
60 |
+
llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
|
61 |
+
|
62 |
chain = load_qa_chain(llm, chain_type="stuff")
|
63 |
|
64 |
def get_helpful_answer(text):
|