Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 5 |
+
from together import Together
|
| 6 |
+
|
| 7 |
+
# Load environment variables
|
| 8 |
+
load_dotenv()
|
| 9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 10 |
+
API_KEY = os.getenv("API_KEY")
|
| 11 |
+
|
| 12 |
+
# Initialize the Together client for guardrail functionality
|
| 13 |
+
client = Together(api_key=API_KEY)
|
| 14 |
+
|
| 15 |
+
# Initialize the Hugging Face endpoint for text generation (Mistral model)
|
| 16 |
+
llm = HuggingFaceEndpoint(
|
| 17 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Replace with your model repo
|
| 18 |
+
huggingfacehub_api_token=HF_TOKEN.strip(),
|
| 19 |
+
temperature=0.7,
|
| 20 |
+
max_new_tokens=100
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# List of topics or keywords inappropriate for kids under 16
|
| 24 |
+
prohibited_topics = [
|
| 25 |
+
"violence", "drugs", "explicit content", "profanity", "hate speech",
|
| 26 |
+
"self-harm", "gambling", "sexual content", "graphic descriptions"
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# Function to handle chatbot response with TogetherAI's guardrails
|
| 30 |
+
def chatbot_response_with_guardrails(message):
|
| 31 |
+
try:
|
| 32 |
+
# Step 1: Generate raw response using Mistral model
|
| 33 |
+
raw_response = llm(message)
|
| 34 |
+
|
| 35 |
+
# Step 2: Use TogetherAI's guardrail model to check the response
|
| 36 |
+
response = client.completions.create(
|
| 37 |
+
model="Meta-Llama/LlamaGuard-2-8b", # TogetherAI guardrail model
|
| 38 |
+
prompt=raw_response
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Extract the response from TogetherAI's guardrail model
|
| 42 |
+
guardrail_check = response.choices[0].text.strip()
|
| 43 |
+
|
| 44 |
+
# Step 3: Check for inappropriate content in the guardrail model's output
|
| 45 |
+
if 'toxic' in guardrail_check.lower() or any(
|
| 46 |
+
topic in guardrail_check.lower() for topic in prohibited_topics
|
| 47 |
+
):
|
| 48 |
+
return "Sorry, the content is not suitable for children under 16."
|
| 49 |
+
|
| 50 |
+
# Step 4: Check raw response for prohibited topics
|
| 51 |
+
if any(topic in raw_response.lower() for topic in prohibited_topics):
|
| 52 |
+
return "Sorry, the content is not suitable for children under 16."
|
| 53 |
+
|
| 54 |
+
# If the response is safe, return the raw response
|
| 55 |
+
return raw_response
|
| 56 |
+
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return f"Error: {e}"
|
| 59 |
+
|
| 60 |
+
# Gradio Interface for Chatbot with Guardrails
|
| 61 |
+
with gr.Blocks() as app_with_guardrails:
|
| 62 |
+
gr.Markdown("## Chatbot With Kid-Safe Guardrails")
|
| 63 |
+
gr.Markdown(
|
| 64 |
+
"This chatbot ensures all responses are appropriate for children under 16."
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Input and output
|
| 68 |
+
with gr.Row():
|
| 69 |
+
user_input = gr.Textbox(label="Your Message", placeholder="Type here...")
|
| 70 |
+
response_output = gr.Textbox(label="Guarded Response", placeholder="Bot will respond here...")
|
| 71 |
+
submit_button = gr.Button("Send")
|
| 72 |
+
|
| 73 |
+
# Button click event
|
| 74 |
+
submit_button.click(
|
| 75 |
+
chatbot_response_with_guardrails,
|
| 76 |
+
inputs=[user_input],
|
| 77 |
+
outputs=[response_output]
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Launch the app
|
| 81 |
+
if __name__ == "__main__":
|
| 82 |
+
app_with_guardrails.launch()
|