File size: 4,125 Bytes
47454a7
 
 
 
 
 
 
0791989
47454a7
 
0791989
 
 
 
 
 
 
 
 
 
75c37a0
 
 
 
 
 
 
 
 
47454a7
75c37a0
 
47454a7
 
 
 
75c37a0
47454a7
 
 
 
 
 
 
 
75c37a0
 
 
 
 
 
47454a7
75c37a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47454a7
 
e5fd579
47454a7
75c37a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47454a7
75c37a0
47454a7
 
 
75c37a0
 
47454a7
 
 
75c37a0
 
47454a7
 
 
 
 
 
75c37a0
47454a7
75c37a0
47454a7
 
75c37a0
 
47454a7
 
 
e5fd579
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*- coding: utf-8 -*-
"""gen ai project f.ipynb
Automatically generated by Colab.
Original file is located at
    https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
"""

import os
from huggingface_hub import login

# Retrieve the actual token from the environment variable
hf_token = os.getenv("HF_TOKEN")

# Check if the token is retrieved properly
if hf_token:
    # Use the retrieved token
    login(token=hf_token, add_to_git_credential=True)
else:
    raise ValueError("Hugging Face token not found in environment variables.")

# Import necessary libraries
from transformers import MarianMTModel, MarianTokenizer, pipeline
import requests
import io
from PIL import Image
import matplotlib.pyplot as plt
import gradio as gr

# Load the translation model and tokenizer
model_name = "Helsinki-NLP/opus-mt-mul-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)

# Create a translation pipeline
translator = pipeline("translation", model=model, tokenizer=tokenizer)

# Function for translation
def translate_text(tamil_text):
    try:
        translation = translator(tamil_text, max_length=40)
        translated_text = translation[0]['translation_text']
        return translated_text
    except Exception as e:
        return f"An error occurred: {str(e)}"

# API credentials and endpoint
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
headers = {"Authorization": f"Bearer {hf_token}"}

# Function to send payload and generate image
def generate_image(prompt):
    try:
        response = requests.post(API_URL, headers=headers, json={"inputs": prompt})

        # Check if the response is successful
        if response.status_code == 200:
            print("API call successful, generating image...")
            image_bytes = response.content

            # Try opening the image
            try:
                image = Image.open(io.BytesIO(image_bytes))
                return image
            except Exception as e:
                print(f"Error opening image: {e}")
                return None
        else:
            print(f"Failed to get image: Status code {response.status_code}")
            print("Response content:", response.text)  # Print response for debugging
            return None

    except Exception as e:
        print(f"An error occurred: {e}")
        return None

# Display image
def show_image(image):
    if image:
        plt.imshow(image)
        plt.axis('off')  # Hide axes
        plt.show()
    else:
        print("No image to display")

# Load GPT-Neo model for creative text generation
from transformers import AutoTokenizer, AutoModelForCausalLM
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")

# Function to generate creative text based on translated text
def generate_creative_text(translated_text):
    input_ids = gpt_neo_tokenizer(translated_text, return_tensors='pt').input_ids
    generated_text_ids = gpt_neo_model.generate(input_ids, max_length=100)
    creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
    return creative_text

# Function to handle the full workflow
def translate_generate_image_and_text(tamil_text):
    # Step 1: Translate Tamil text to English
    translated_text = translate_text(tamil_text)

    # Step 2: Generate an image based on the translated text
    image = generate_image(translated_text)

    # Step 3: Generate creative text based on the translated text
    creative_text = generate_creative_text(translated_text)

    return translated_text, creative_text, image

# Create Gradio interface
interface = gr.Interface(
    fn=translate_generate_image_and_text,
    inputs="text",
    outputs=["text", "text", "image"],
    title="Tamil to English Translation, Image Generation & Creative Text",
    description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation."
)

# Launch Gradio app
interface.launch()