Spaces:
Sleeping
Sleeping
File size: 4,656 Bytes
47454a7 0791989 8d26180 47454a7 8d26180 47454a7 0791989 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 e5fd579 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 8d26180 47454a7 e5fd579 8d26180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
# -*- coding: utf-8 -*-
"""gen ai project f.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
"""
import os
import asyncio
from huggingface_hub import login
from transformers import MarianMTModel, MarianTokenizer, pipeline, AutoTokenizer, AutoModelForCausalLM
import aiohttp
import io
from PIL import Image
import matplotlib.pyplot as plt
import gradio as gr
# Retrieve the actual token from the environment variable
hf_token = os.getenv("HF_TOKEN")
# Check if the token is retrieved properly
if hf_token:
# Use the retrieved token
login(token=hf_token, add_to_git_credential=True)
else:
raise ValueError("Hugging Face token not found in environment variables.")
# Load the translation model and tokenizer (cached for faster loading)
model_name = "Helsinki-NLP/opus-mt-mul-en"
tokenizer = MarianTokenizer.from_pretrained(model_name, cache_dir="./cache")
model = MarianMTModel.from_pretrained(model_name, cache_dir="./cache")
# Create a translation pipeline
translator = pipeline("translation", model=model, tokenizer=tokenizer)
# Load GPT-Neo model for creative text generation (cached)
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M", cache_dir="./cache")
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M", cache_dir="./cache")
# API credentials and endpoint for image generation
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
headers = {"Authorization": f"Bearer {hf_token}"}
# Function for translation (batch translation for multiple inputs)
def translate_text(tamil_text):
try:
translation = translator(tamil_text, max_length=40)
translated_text = translation[0]['translation_text']
return translated_text
except Exception as e:
return f"An error occurred: {str(e)}"
# Asynchronous function to send payload and generate image
async def generate_image_async(prompt):
try:
async with aiohttp.ClientSession() as session:
async with session.post(API_URL, headers=headers, json={"inputs": prompt}) as response:
if response.status == 200:
print("API call successful, generating image...")
image_bytes = await response.read()
# Try opening the image
try:
image = Image.open(io.BytesIO(image_bytes))
return image
except Exception as e:
print(f"Error opening image: {e}")
return None
else:
print(f"Failed to get image: Status code {response.status}")
return None
except Exception as e:
print(f"An error occurred: {e}")
return None
# Generate creative text based on the translated text (with optimization for generation)
def generate_creative_text(translated_text, max_length=50):
input_ids = gpt_neo_tokenizer(translated_text, return_tensors='pt').input_ids
generated_text_ids = gpt_neo_model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, top_k=50)
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
return creative_text
# Handle the full workflow: translate, generate image, generate creative text
async def translate_generate_image_and_text(tamil_text):
# Step 1: Translate Tamil text to English
translated_text = translate_text(tamil_text)
# Step 2: Generate an image based on the translated text asynchronously
image = await generate_image_async(translated_text)
# Step 3: Generate creative text based on the translated text
creative_text = generate_creative_text(translated_text)
return translated_text, creative_text, image
# Display image
def show_image(image):
if image:
plt.imshow(image)
plt.axis('off') # Hide axes
plt.show()
else:
print("No image to display")
# Create Gradio interface with live updates for faster feedback
interface = gr.Interface(
fn=lambda tamil_text: asyncio.run(translate_generate_image_and_text(tamil_text)),
inputs="text",
outputs=["text", "text", "image"],
title="Optimized Tamil to English Translation, Image Generation & Creative Text",
description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation.",
live=True # Enables real-time outputs for faster feedback
)
# Launch Gradio app
interface.launch()
|