Spaces:
Sleeping
Sleeping
File size: 4,464 Bytes
47454a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# -*- coding: utf-8 -*-
"""gen ai project f.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
"""
# Install necessary packages
!pip install transformers torch diffusers streamlit gradio huggingface_hub
!pip install pyngrok # For exposing the app to the public
!pip install sacremoses
!pip install sentencepiece
from huggingface_hub import login
login(token="hf_gen")
!pip install requests
!pip install Pillow
# Import necessary libraries
from transformers import MarianMTModel, MarianTokenizer, pipeline
# Load the translation model and tokenizer
model_name = "Helsinki-NLP/opus-mt-mul-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Create a translation pipeline
translator = pipeline("translation", model=model, tokenizer=tokenizer)
# Function for translation
def translate_text(tamil_text):
try:
# Perform translation
translation = translator(tamil_text, max_length=40)
translated_text = translation[0]['translation_text']
return translated_text
except Exception as e:
return f"An error occurred: {str(e)}"
# Test translation with example Tamil text
tamil_text = "மழையுடன் ஒரு பூ" # "A flower with rain"
translated_text = translate_text(tamil_text)
print(f"Translated Text: {translated_text}")
import requests
import io
from PIL import Image
import matplotlib.pyplot as plt
# API credentials and endpoint
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
headers = {"Authorization": "Bearer hf_gen"}
# Function to send payload and generate image
def generate_image(prompt):
try:
# Send request to API
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
# Check if the response is successful
if response.status_code == 200:
print("API call successful, generating image...")
image_bytes = response.content
# Try opening the image
try:
image = Image.open(io.BytesIO(image_bytes))
return image
except Exception as e:
print(f"Error opening image: {e}")
else:
# Handle non-200 responses
print(f"Failed to get image: Status code {response.status_code}")
print("Response content:", response.text) # Print response for debugging
except Exception as e:
print(f"An error occurred: {e}")
# Display image
def show_image(image):
if image:
plt.imshow(image)
plt.axis('off') # Hide axes
plt.show()
else:
print("No image to display")
# Test the function with a prompt
prompt = "A flower with rain"
image = generate_image(prompt)
# Display the generated image
show_image(image)
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load GPT-Neo model for creative text generation
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
# Function to generate creative text based on translated text
def generate_creative_text(translated_text):
input_ids = gpt_neo_tokenizer(translated_text, return_tensors='pt').input_ids
generated_text_ids = gpt_neo_model.generate(input_ids, max_length=100)
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
return creative_text
import gradio as gr
# Function to handle the full workflow
def translate_generate_image_and_text(tamil_text):
# Step 1: Translate Tamil text to English
translated_text = translate_text(tamil_text)
# Step 2: Generate an image based on the translated text
image = generate_image(translated_text)
# Step 3: Generate creative text based on the translated text
creative_text = generate_creative_text(translated_text)
return translated_text, creative_text, image
# Create Gradio interface
interface = gr.Interface(
fn=translate_generate_image_and_text,
inputs="text",
outputs=["text", "text", "image"],
title="Tamil to English Translation, Image Generation & Creative Text",
description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation."
)
# Launch Gradio app
interface.launch() |