Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""gen ai project f.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J | |
""" | |
import os | |
from transformers import MarianMTModel, MarianTokenizer | |
import gradio as gr | |
from PIL import Image, UnidentifiedImageError | |
import requests | |
import io | |
# Load translation models | |
model_name = "Helsinki-NLP/opus-mt-mul-en" | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
# Define language map | |
language_map = { | |
"Tamil": "ta", | |
"Russian": "rus" | |
} | |
def translate_text(input_text, selected_languages): | |
if not selected_languages: | |
return "Please select at least one language." | |
selected_language = selected_languages[0] # Pick the first selected language | |
lang_code = language_map[selected_language] | |
lang_prefix = f">>{lang_code}<< " | |
text_with_lang = lang_prefix + input_text | |
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True) | |
translated_tokens = model.generate(**inputs) | |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True) | |
return translation | |
def generate_image(prompt): | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
hf_token = os.getenv("HF_TOKEN") | |
headers = {"Authorization": f"Bearer {hf_token}"} | |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt}) | |
if response.status_code == 200: | |
image_bytes = response.content | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
except UnidentifiedImageError: | |
return None | |
else: | |
return None | |
def process_input(text_input, selected_languages): | |
translated_output = translate_text(text_input, selected_languages) | |
image = generate_image(translated_output) | |
return translated_output, image | |
# Gradio interface | |
interface = gr.Interface( | |
fn=process_input, | |
inputs=[gr.Textbox(label="Input Text"), gr.CheckboxGroup(choices=["Tamil", "Russian"], label="Select Language")], | |
outputs=[gr.Textbox(label="Translated Text"), gr.Image(label="Generated Image")], | |
title="Multilingual Translation and Image Generation", | |
description="Translate Tamil or Russian text to English and generate an image." | |
) | |
interface.launch() | |