Spaces:
Sleeping
Sleeping
import os | |
from huggingface_hub import login | |
# Retrieve the actual token from the environment variable | |
hf_token = os.getenv("HF_TOKEN") | |
# Check if the token is retrieved properly | |
if hf_token: | |
# Use the retrieved token | |
login(token=hf_token, add_to_git_credential=True) | |
else: | |
raise ValueError("Hugging Face token not found in environment variables.") | |
# Import necessary libraries | |
from transformers import MarianMTModel, MarianTokenizer, pipeline | |
import requests | |
import io | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
# Load the translation model and tokenizer | |
model_name = "Helsinki-NLP/opus-mt-mul-en" | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
# Create a translation pipeline | |
translator = pipeline("translation", model=model, tokenizer=tokenizer) | |
# Function for translation | |
def translate_text(tamil_text): | |
try: | |
translation = translator(tamil_text, max_length=40) | |
translated_text = translation[0]['translation_text'] | |
return translated_text | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# API credentials and endpoint | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
headers = {"Authorization": f"Bearer {hf_token}"} | |
# Function to send payload and generate image | |
def generate_image(prompt): | |
try: | |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt}) | |
# Check if the response is successful | |
if response.status_code == 200: | |
print("API call successful, generating image...") | |
image_bytes = response.content | |
# Try opening the image | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
except Exception as e: | |
print(f"Error opening image: {e}") | |
return None | |
else: | |
print(f"Failed to get image: Status code {response.status_code}") | |
print("Response content:", response.text) # Print response for debugging | |
return None | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return None | |
# Import necessary libraries for Mistral model | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load Mistral model and tokenizer | |
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") | |
mistral_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") | |
# Function to generate creative text based on translated text using Mistral | |
def generate_creative_text(translated_text): | |
input_ids = mistral_tokenizer(translated_text, return_tensors='pt').input_ids | |
generated_text_ids = mistral_model.generate(input_ids, max_length=100) | |
creative_text = mistral_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True) | |
return creative_text | |
# Function to handle the full workflow | |
def translate_generate_image_and_text(tamil_text): | |
# Step 1: Translate Tamil text to English | |
translated_text = translate_text(tamil_text) | |
# Step 2: Generate an image based on the translated text | |
image = generate_image(translated_text) | |
# Step 3: Generate creative text based on the translated text | |
creative_text = generate_creative_text(translated_text) | |
return translated_text, creative_text, image | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=translate_generate_image_and_text, | |
inputs="text", | |
outputs=["text", "text", "image"], | |
title="Tamil to English Translation, Image Generation & Creative Text", | |
description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation." | |
) | |
# Launch Gradio app | |
interface.launch() | |