Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,115 +6,61 @@ Original file is located at
|
|
6 |
"""
|
7 |
|
8 |
import os
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
hf_token = os.getenv("HF_TOKEN")
|
13 |
-
|
14 |
-
# Check if the token is retrieved properly
|
15 |
-
if hf_token:
|
16 |
-
# Use the retrieved token
|
17 |
-
login(token=hf_token, add_to_git_credential=True)
|
18 |
-
else:
|
19 |
-
raise ValueError("Hugging Face token not found in environment variables.")
|
20 |
-
|
21 |
-
# Import necessary libraries
|
22 |
-
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
23 |
import requests
|
24 |
import io
|
25 |
-
from PIL import Image
|
26 |
-
import matplotlib.pyplot as plt
|
27 |
-
import gradio as gr
|
28 |
|
29 |
-
# Load
|
30 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
31 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
32 |
model = MarianMTModel.from_pretrained(model_name)
|
33 |
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Function for translation
|
38 |
-
def translate_text(tamil_text):
|
39 |
-
try:
|
40 |
-
translation = translator(tamil_text, max_length=40)
|
41 |
-
translated_text = translation[0]['translation_text']
|
42 |
-
return translated_text
|
43 |
-
except Exception as e:
|
44 |
-
return f"An error occurred: {str(e)}"
|
45 |
-
|
46 |
-
# API credentials and endpoint
|
47 |
-
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
48 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
49 |
-
|
50 |
-
# Function to send payload and generate image
|
51 |
def generate_image(prompt):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
print(f"Error opening image: {e}")
|
66 |
-
return None
|
67 |
-
else:
|
68 |
-
print(f"Failed to get image: Status code {response.status_code}")
|
69 |
-
print("Response content:", response.text) # Print response for debugging
|
70 |
return None
|
71 |
-
|
72 |
-
except Exception as e:
|
73 |
-
print(f"An error occurred: {e}")
|
74 |
-
return None
|
75 |
-
|
76 |
-
# Display image
|
77 |
-
def show_image(image):
|
78 |
-
if image:
|
79 |
-
plt.imshow(image)
|
80 |
-
plt.axis('off') # Hide axes
|
81 |
-
plt.show()
|
82 |
else:
|
83 |
-
|
84 |
-
|
85 |
-
# Load GPT-Neo model for creative text generation
|
86 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
87 |
-
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
88 |
-
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
89 |
-
|
90 |
-
# Function to generate creative text based on translated text
|
91 |
-
def generate_creative_text(translated_text):
|
92 |
-
input_ids = gpt_neo_tokenizer(translated_text, return_tensors='pt').input_ids
|
93 |
-
generated_text_ids = gpt_neo_model.generate(input_ids, max_length=100)
|
94 |
-
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
|
95 |
-
return creative_text
|
96 |
-
|
97 |
-
# Function to handle the full workflow
|
98 |
-
def translate_generate_image_and_text(tamil_text):
|
99 |
-
# Step 1: Translate Tamil text to English
|
100 |
-
translated_text = translate_text(tamil_text)
|
101 |
-
|
102 |
-
# Step 2: Generate an image based on the translated text
|
103 |
-
image = generate_image(translated_text)
|
104 |
-
|
105 |
-
# Step 3: Generate creative text based on the translated text
|
106 |
-
creative_text = generate_creative_text(translated_text)
|
107 |
|
108 |
-
|
|
|
|
|
|
|
109 |
|
110 |
-
#
|
111 |
interface = gr.Interface(
|
112 |
-
fn=
|
113 |
-
inputs="
|
114 |
-
outputs=["
|
115 |
-
title="
|
116 |
-
description="
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
interface.launch()
|
|
|
6 |
"""
|
7 |
|
8 |
import os
|
9 |
+
from transformers import MarianMTModel, MarianTokenizer
|
10 |
+
import gradio as gr
|
11 |
+
from PIL import Image, UnidentifiedImageError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import requests
|
13 |
import io
|
|
|
|
|
|
|
14 |
|
15 |
+
# Load translation models
|
16 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
17 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
18 |
model = MarianMTModel.from_pretrained(model_name)
|
19 |
|
20 |
+
# Define language map
|
21 |
+
language_map = {
|
22 |
+
"Tamil": "ta",
|
23 |
+
"Russian": "rus"
|
24 |
+
}
|
25 |
+
|
26 |
+
def translate_text(input_text, selected_language):
|
27 |
+
lang_code = language_map[selected_language]
|
28 |
+
lang_prefix = f">>{lang_code}<< "
|
29 |
+
text_with_lang = lang_prefix + input_text
|
30 |
+
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
|
31 |
+
translated_tokens = model.generate(**inputs)
|
32 |
+
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
33 |
+
return translation
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def generate_image(prompt):
|
36 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
37 |
+
hf_token = os.getenv("HF_TOKEN")
|
38 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
39 |
+
|
40 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
41 |
+
|
42 |
+
if response.status_code == 200:
|
43 |
+
image_bytes = response.content
|
44 |
+
try:
|
45 |
+
image = Image.open(io.BytesIO(image_bytes))
|
46 |
+
return image
|
47 |
+
except UnidentifiedImageError:
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
else:
|
50 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def process_input(text_input, selected_language):
|
53 |
+
translated_output = translate_text(text_input, selected_language)
|
54 |
+
image = generate_image(translated_output)
|
55 |
+
return translated_output, image
|
56 |
|
57 |
+
# Gradio interface
|
58 |
interface = gr.Interface(
|
59 |
+
fn=process_input,
|
60 |
+
inputs=[gr.Textbox(label="Input Text"), gr.CheckboxGroup(choices=["Tamil", "Russian"], label="Select Language")],
|
61 |
+
outputs=[gr.Textbox(label="Translated Text"), gr.Image(label="Generated Image")],
|
62 |
+
title="Multilingual Translation and Image Generation",
|
63 |
+
description="Translate Tamil or Russian text to English and generate an image."
|
64 |
)
|
65 |
|
66 |
+
interface.launch()
|
|