Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""gen ai project f.ipynb
|
3 |
-
Automatically generated by Colab.
|
4 |
-
Original file is located at
|
5 |
-
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
|
6 |
-
"""
|
7 |
-
|
8 |
import os
|
9 |
from transformers import MarianMTModel, MarianTokenizer, GPTNeoForCausalLM, AutoTokenizer
|
10 |
import gradio as gr
|
@@ -30,6 +23,7 @@ language_map = {
|
|
30 |
}
|
31 |
|
32 |
def translate_text(input_text, selected_languages):
|
|
|
33 |
if not selected_languages:
|
34 |
return "Please select at least one language."
|
35 |
|
@@ -38,13 +32,16 @@ def translate_text(input_text, selected_languages):
|
|
38 |
lang_prefix = f">>{lang_code}<< "
|
39 |
text_with_lang = lang_prefix + input_text
|
40 |
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
|
|
|
|
|
41 |
translated_tokens = model.generate(**inputs)
|
42 |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
43 |
return translation
|
44 |
|
45 |
def generate_image(prompt):
|
|
|
46 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
47 |
-
hf_token = os.getenv("HF_TOKEN")
|
48 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
49 |
|
50 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
@@ -60,13 +57,17 @@ def generate_image(prompt):
|
|
60 |
return None
|
61 |
|
62 |
def generate_creative_text(translated_text):
|
|
|
63 |
prompt = f"Create a creative text based on the following sentence: {translated_text}"
|
64 |
inputs = gpt_neo_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=100)
|
|
|
|
|
65 |
output = gpt_neo_model.generate(inputs["input_ids"], max_length=100, do_sample=True, temperature=0.7)
|
66 |
creative_text = gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
return creative_text
|
68 |
|
69 |
def process_input(text_input, selected_languages):
|
|
|
70 |
translated_output = translate_text(text_input, selected_languages)
|
71 |
creative_text = generate_creative_text(translated_output)
|
72 |
image = generate_image(translated_output)
|
@@ -75,12 +76,17 @@ def process_input(text_input, selected_languages):
|
|
75 |
# Gradio interface
|
76 |
interface = gr.Interface(
|
77 |
fn=process_input,
|
78 |
-
inputs=[
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
title="Multilingual Translation, Creative Text, and Image Generation",
|
81 |
description="Translate Tamil, Russian, Arabic, or Portuguese text to English, generate creative text, and generate an image."
|
82 |
)
|
83 |
|
84 |
interface.launch()
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from transformers import MarianMTModel, MarianTokenizer, GPTNeoForCausalLM, AutoTokenizer
|
3 |
import gradio as gr
|
|
|
23 |
}
|
24 |
|
25 |
def translate_text(input_text, selected_languages):
|
26 |
+
"""Translate input text into English based on the selected language."""
|
27 |
if not selected_languages:
|
28 |
return "Please select at least one language."
|
29 |
|
|
|
32 |
lang_prefix = f">>{lang_code}<< "
|
33 |
text_with_lang = lang_prefix + input_text
|
34 |
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
|
35 |
+
|
36 |
+
# Generate translated tokens
|
37 |
translated_tokens = model.generate(**inputs)
|
38 |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
39 |
return translation
|
40 |
|
41 |
def generate_image(prompt):
|
42 |
+
"""Generate an image based on the provided prompt."""
|
43 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
44 |
+
hf_token = os.getenv("HF_TOKEN") # Ensure to set this environment variable
|
45 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
46 |
|
47 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
|
|
57 |
return None
|
58 |
|
59 |
def generate_creative_text(translated_text):
|
60 |
+
"""Generate creative text based on the translated sentence."""
|
61 |
prompt = f"Create a creative text based on the following sentence: {translated_text}"
|
62 |
inputs = gpt_neo_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=100)
|
63 |
+
|
64 |
+
# Generate creative text
|
65 |
output = gpt_neo_model.generate(inputs["input_ids"], max_length=100, do_sample=True, temperature=0.7)
|
66 |
creative_text = gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
return creative_text
|
68 |
|
69 |
def process_input(text_input, selected_languages):
|
70 |
+
"""Process the input text: translate, generate creative text, and generate an image."""
|
71 |
translated_output = translate_text(text_input, selected_languages)
|
72 |
creative_text = generate_creative_text(translated_output)
|
73 |
image = generate_image(translated_output)
|
|
|
76 |
# Gradio interface
|
77 |
interface = gr.Interface(
|
78 |
fn=process_input,
|
79 |
+
inputs=[
|
80 |
+
gr.Textbox(label="Input Text"),
|
81 |
+
gr.CheckboxGroup(choices=["Tamil", "Russian", "Arabic", "Portuguese"], label="Select Language")
|
82 |
+
],
|
83 |
+
outputs=[
|
84 |
+
gr.Textbox(label="Translated Text"),
|
85 |
+
gr.Textbox(label="Creative Text"),
|
86 |
+
gr.Image(label="Generated Image")
|
87 |
+
],
|
88 |
title="Multilingual Translation, Creative Text, and Image Generation",
|
89 |
description="Translate Tamil, Russian, Arabic, or Portuguese text to English, generate creative text, and generate an image."
|
90 |
)
|
91 |
|
92 |
interface.launch()
|
|
|
|