Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,21 +6,27 @@ Original file is located at
|
|
6 |
"""
|
7 |
|
8 |
import os
|
9 |
-
from transformers import MarianMTModel, MarianTokenizer
|
10 |
import gradio as gr
|
11 |
from PIL import Image, UnidentifiedImageError
|
12 |
import requests
|
13 |
import io
|
14 |
|
15 |
-
# Load translation
|
16 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
17 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
18 |
model = MarianMTModel.from_pretrained(model_name)
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
21 |
language_map = {
|
22 |
"Tamil": "ta",
|
23 |
-
"Russian": "rus"
|
|
|
|
|
24 |
}
|
25 |
|
26 |
def translate_text(input_text, selected_languages):
|
@@ -53,18 +59,26 @@ def generate_image(prompt):
|
|
53 |
else:
|
54 |
return None
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def process_input(text_input, selected_languages):
|
57 |
translated_output = translate_text(text_input, selected_languages)
|
|
|
58 |
image = generate_image(translated_output)
|
59 |
-
return translated_output, image
|
60 |
|
61 |
# Gradio interface
|
62 |
interface = gr.Interface(
|
63 |
fn=process_input,
|
64 |
-
inputs=[gr.Textbox(label="Input Text"), gr.CheckboxGroup(choices=["Tamil", "Russian"], label="Select Language")],
|
65 |
-
outputs=[gr.Textbox(label="Translated Text"), gr.Image(label="Generated Image")],
|
66 |
-
title="Multilingual Translation and Image Generation",
|
67 |
-
description="Translate Tamil or
|
68 |
)
|
69 |
|
70 |
interface.launch()
|
|
|
6 |
"""
|
7 |
|
8 |
import os
|
9 |
+
from transformers import MarianMTModel, MarianTokenizer, GPTNeoForCausalLM, AutoTokenizer
|
10 |
import gradio as gr
|
11 |
from PIL import Image, UnidentifiedImageError
|
12 |
import requests
|
13 |
import io
|
14 |
|
15 |
+
# Load translation model
|
16 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
17 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
18 |
model = MarianMTModel.from_pretrained(model_name)
|
19 |
|
20 |
+
# Load GPT-Neo model for creative text generation
|
21 |
+
gpt_neo_model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
22 |
+
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
23 |
+
|
24 |
+
# Define language map (including new languages)
|
25 |
language_map = {
|
26 |
"Tamil": "ta",
|
27 |
+
"Russian": "rus",
|
28 |
+
"Arabic": "ar",
|
29 |
+
"Portuguese": "pt"
|
30 |
}
|
31 |
|
32 |
def translate_text(input_text, selected_languages):
|
|
|
59 |
else:
|
60 |
return None
|
61 |
|
62 |
+
def generate_creative_text(translated_text):
|
63 |
+
prompt = f"Create a creative text based on the following sentence: {translated_text}"
|
64 |
+
inputs = gpt_neo_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=100)
|
65 |
+
output = gpt_neo_model.generate(inputs["input_ids"], max_length=100, do_sample=True, temperature=0.7)
|
66 |
+
creative_text = gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
+
return creative_text
|
68 |
+
|
69 |
def process_input(text_input, selected_languages):
|
70 |
translated_output = translate_text(text_input, selected_languages)
|
71 |
+
creative_text = generate_creative_text(translated_output)
|
72 |
image = generate_image(translated_output)
|
73 |
+
return translated_output, creative_text, image
|
74 |
|
75 |
# Gradio interface
|
76 |
interface = gr.Interface(
|
77 |
fn=process_input,
|
78 |
+
inputs=[gr.Textbox(label="Input Text"), gr.CheckboxGroup(choices=["Tamil", "Russian", "Arabic", "Portuguese"], label="Select Language")],
|
79 |
+
outputs=[gr.Textbox(label="Translated Text"), gr.Textbox(label="Creative Text"), gr.Image(label="Generated Image")],
|
80 |
+
title="Multilingual Translation, Creative Text, and Image Generation",
|
81 |
+
description="Translate Tamil, Russian, Arabic, or Portuguese text to English, generate creative text, and generate an image."
|
82 |
)
|
83 |
|
84 |
interface.launch()
|