fclip / src /encoder.py
pediot's picture
normalize vectors
5cc3519
from typing import List, Dict
from PIL.Image import Image
import torch
from transformers import AutoModel, AutoProcessor
from .utils import normalize_vectors
MODEL_NAME = "Marqo/marqo-fashionCLIP"
class FashionCLIPEncoder:
def __init__(self, normalize: bool = False):
self.normalize = normalize
self.device = torch.device("cpu")
self.processor = AutoProcessor.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
)
self.model = AutoModel.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
)
self.model.to(self.device)
self.model.eval()
def encode_text(self, texts: List[str]) -> List[List[float]]:
kwargs = {
"padding": "max_length",
"return_tensors": "pt",
"truncation": True,
}
inputs = self.processor(text=texts, **kwargs)
with torch.no_grad():
batch = {k: v.to(self.device) for k, v in inputs.items()}
vectors = self.model.get_text_features(**batch)
return self._postprocess_vectors(vectors)
def encode_images(self, images: List[Image]) -> List[List[float]]:
inputs = self.processor(images=images, return_tensors="pt")
with torch.no_grad():
batch = {k: v.to(self.device) for k, v in inputs.items()}
vectors = self.model.get_image_features(**batch)
return self._postprocess_vectors(vectors)
def _postprocess_vectors(self, vectors: torch.Tensor) -> List[List[float]]:
if self.normalize:
vectors = normalize_vectors(vectors)
return vectors.detach().cpu().numpy().tolist()