Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
model = AutoModelForImageTextToText.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
def launch(input): | |
messages = [ | |
{ | |
"role": "user", | |
"content": | |
[ | |
{ | |
"type": "image", | |
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", | |
}, | |
{ | |
"type": "text", "text": "Describe this image." | |
}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return(output_text) | |
iface = gr.Interface(launch, | |
inputs=gr.Image(type='pil'), | |
outputs="text") | |
iface.launch() |